Microtechnology – New Paradigm For Process industries

Goran Jovanovic
Oregon State University
School of Chemical, Biological, and Environmental Engineering

In Affiliation With

MBI
Microproducts Breakthrough Institute

ONAMI
Oregon Nanoscience And Microtechnologies Institute

goran@engr.orst.edu
Microtechnology

The study, development, and application of devices whose operation is based on the scale of 1-100 microns.

(A human hair is approximately 100 microns thick.)

Image source: http://www.flickr.com/photos/thestarshine/69591402/
Nature’s Microtechnology

Nature has selected the micro scale for the realization of many biological processes.

Leaf Alveoli Kidney
What is Microtechnology Good For?

- Production of information
 - lab-on-chip
- Production of services
 - pacemaker
 - kidney dialyser
- Production of energy and bulk material
 - chemicals
 - fuels
 - nanoparticles
Micro/Nano Technologies Under Development
In Dr. Jovanovic Laboratory

- Microreactors for Biodiesel Production.
- Microreactors for Production H$_2$O$_2$.
- Microreactor for Desulphurization of Fuels.
- Microseparators for Liquid-Liquid Extraction.
- Microreactors for Production of Veins and Arteries.
- Micro Haemo Dialyser.
- Microreactor for Destruction of Toxic Waste.
- Microseparators for Desalination of Water
- Microreactors for Steam Reforming (atm, 1100°F)
Fundamental Advantages of Microtechnology

• Intensification of Heat and Mass Transport
 - Small scale - Short time of mass and heat transport ($t = l^2/D$)

• Reduced Size
 - 10-100 times reduction in hardware volume over conventional technology;
 - 5-50 times reduction in hardware mass;
 - Shifts size-energy trade-offs toward higher efficiency;
 - Able to integrate heat exchanges with reactors and separators
 simplifying processes.

• Large surface to volume ratio ($10^5-10^8 \text{ m}^2/\text{m}^3$)

• Changes chemical product distribution
Fundamental Advantages of Microtechnology

• **Low Pressure Drop**
 Reduces power for pumps, fans, and blowers;

• **Gravity independence**
 Gravity effect diminish to surface and hydrodynamics forces as size of channels decreases;

• **High Degree of Reaction Control**
 Minimizing unwanted environmental and side reactions;
 Minimize unwanted reversible reactions;
 Enables processing of very energetic reactants;
 Intensification of chemical kinetics (*the last frontier in mass transport*)

• **Extremely High Quench Rates**
 Small reactant volumes mean less mass or energy required to quench;
 Extremely rapid heat transport enables fast thermal discharge.
Advantages of Microtechnology - Parallel Architecture

• Fast screening of materials, catalyst and processes

 Flexibility in capacity and in design
 - Provides for deployment at wide range of scales;
 - Facilitates gradual expansion of capacity as scale of operations grows by adding more modules;

• Operating robustness and controllability
 - Enhances reliability, allowing problems to be isolated and repaired.

• Mass Production of Microscale Components
 - Microlamination process enables mass production;
 - Bonded stacks can contain multiple processes;
 - Multiple processes in a single device reduces field assembly and testing.
Commercial Advantages of Microtechnology

- Lower capital investment;
- Lower operating cost;
- Faster transfer of research to commercial production;
- Earlier start of production at lower cost
 - Reduces life-cycle costs through early testing at implementation scale;
- Easier scale up (numbering -up) to production capacity;
- Distributed technology implementation (distributed production);
- Integration of micro-technologies with other systems;
- Lower cost of transportation of material and energy;
- Replacing batch with continuous processes.
Safety and Security Advantages

• Small channel inhibits flame/explosion front propagation;
• Small volumes translate to low stored energy;
• Smaller volume less hazardous materials in the process.
Sweet Spot of Microtechnology

- Large surface to volume ratio
- Flexibility in capacity and design
- Distributed production
- Integration with other systems
Micro-Scale Reactors

First MECS micro-reactor, OSU 1999
Catalyst and Catalyst Deposition

Catalyst and Catalyst Deposition
Catalyst and Catalyst Deposition
FeAl 200 µm thick sheet, operating temperature 1100 °C
GoNano Technologies Inc.
121 W Sweet Ave, Suite 115, Moscow ID 83843
Microreactors

- Plate
- Gasket
- Quartz window
- Flow separator
- Teflon spacer
Microreactors
Experimental Setup – Biodiesel Production

Stock solution of methanol with dissolved NaOH in 10 ml syringe

Syringe Pump

Soybean Oil in 60 ml syringe

Microreactor

Biodiesel Phase

Glycerol Phase

ON/OFF
Scale-Up = Numbering-Up
Various Views - Biodiesel Microreactor

Biodiesel
Heating Fluid
Methanol
Crude Oil
Glycerol

Single Stage Biodiesel Microreactor

- Oil Inlet Manifold
- Reaction Channels
- Oil/Glycerol Phase Separation Chamber
- Methanol Inlets
- Glycerol Outlet
- Oil/Biodiesel Phase Outlet to Second Stage
Two Stage Biodiesel Microreactor

First Stage
- Oil Inlet
- Methanol Inlet
- Heating Fluid Inlet/Outlet
- Product Glycerol Stream

Second Stage
- Methanol Inlet
- Product Biodiesel Outlet
- Heating Fluid Inlet/Outlet
- Product Glycerol Stream

Materials:
- Biodiesel
- Heating Fluid
- Methanol
- Crude Oil
- Glycerol
Exploded View - Biodiesel Microreactor

- Second Stage
 - Methanol Inlet/Manifold
 - Oil Phase Outlet
 - Product Biodiesel Outlet
 - Reaction Channels
- First Stage
 - Separation Chamber
 - Oil Phase Outlet
 - Product Glycerol Outlet
 - Methanol Inlet/Manifold
 - Reaction Channels

- Heating Fluid
- Methanol
- Crude Oil
- Glycerol
- Biodiesel

Micromixer Plates

Mixing Channels

Alcohol Feed Channel

Sintered SS Plate
Microreactor Design

Reactor Channels
Separator Plate
Reactor Channels
The Integrated 3-Stage Biodiesel Plant

- **Stage 1**
- **Stage 2**
- **Stage 3**

Size
20” X 16” X 8”

Capacity
12ml/min = ~4.5 gal/day
1500 gal/year
Oxidative desulfurization of fuels

Thiophene

\[
\text{S}\quad [\text{OH}^+] \quad \text{S} \quad [\text{OH}^+] \quad \text{S}
\]

Non-polar \quad Polar \quad Polar

Dibenzothiophene

\[
\text{S} \quad [\text{OH}^+] \quad \text{S} \quad [\text{OH}^+] \quad \text{S}
\]

Non-polar \quad Polar \quad Polar
The desulfurization reaction kinetics is approximated with a pseudo 1st order rate model. The pseudo 1st order approximation is associated with the overall degradation reaction of thiophene which consist of the following steps:

\[T \xrightarrow{h\nu, k_1} T^* \]
Activation of thiophene

\[H_2O_2 \xrightarrow{h\nu, k_2} H_2O_2^* \]
Activation of oxidant

\[T^* \xrightarrow{k_{-1}} T \]
Deactivation of thiophene

\[T^* \xrightarrow{k_3} \text{product} \]
Activated thiophene conversion

\[T + H_2O_2^* \xrightarrow{k_4} \text{products} \]
Thiophene conversion with activated oxidant
Desulfurization of Fuels Two-phase microreactor

- Two reactants enter micro-channel separately with flow rates Q_1 and Q_2;
- Two phases have different properties (D, γ, μ, η)

$A + B \Rightarrow R \quad -r_A = kC_A C_B$

Second order chemical reaction;

- Q_1
- Q_2

Phase 1 - reactant A

Phase 2 - reactant B

UV-light source

UV transparent window

Interface

$A + B \Rightarrow R \quad -r_A = kC_A C_B$

Second order chemical reaction;
Experimental Set-up

Hexane phase
(300 ppm Thiophene/Dibenzothiophene)

Syringe Pump

30% H₂O₂

UV Light

Microreactor

Hexane Phase

Water Phase
Experimental Setup for Interface Reactions
Desulphurization of Fuels
Experimental results

Desulphurization of Fuels

\[C_0 = 300 \text{ ppm} \]
\[I = 5.0 \times 10^{-3} \text{ m} \]
\[D = 3.88 \times 10^{-9} \text{ m}^2\text{s}^{-1} \]
\[\text{Temp} = 25^\circ\text{C} \]

\[x = 98.20\% \]
\[C = 5.40 \text{ ppm} \]

Residence Time (min.)
Experimental Results and Model Simulation

Thiophene concentration at spacer thickness = 50 µm

- $C_0 = 300$ ppm
- $I = 5.0 \times 10^{-3}$ m
- $D = 3.88 \times 10^{-9}$ m2s$^{-1}$
- Temp = 25°C

$x = 98.20\%$

$C = 5.40$ ppm

Residence Time (min.)
Published data by other researchers

- Batch reactor - T - 70°C [20]
- Batch reactor - DBT - 30% H₂O₂ - 50°C - b>280nm [36]
- Batch reactor - 4,6-DMDBT - no H₂O₂ - air=1L/min - 50°C [22]
- Batch reactor - DBT - no H₂O₂ - air=0.5L/min - 50°C [23]
- Batch reactor - DBT - no H₂O₂ - air=1L/min - 50°C [22]
- Batch reactor - DBT - 30% H₂O₂ - 50°C [23]
Comparison with other researchers

OSU Data

- Batch reactor - T - 70oC [20]
- Batch reactor - DBT - 30% H2O2 - 50oC - L 280nm [36]
- Batch reactor - 4,6-DMDBT - no H2O2 - air=1L/min - 50oC [22]
- Microreactor - T - 100 mm
- Microreactor - T - 50 mm
- Batch reactor - DBT - no H2O2 - air=0.5L/min - 50oC [23]
- Batch reactor - DBT - no H2O2 - air=1L/min - 50oC [22]
- Batch reactor - DBT - 30% H2O2 - 50oC [23]
- Microreactor - T - 50 mm
DBT Conversion at 50 µm Homogenous Microreactor

- Temp 22°C
- Temp 40°C

Spacer: 50 µm
Co: 700 ppm
DBT Conversion in 50 µm Microreactor
Microtechnology Based Processes
Steam Reforming of CH$_4$ and Biodiesel

Two 25.0 mm × 7.5 mm × 220 µm microchannels separated by 200 µm catalyst support plate with a catalytic surface of 165 mm2

T=1000°C
Microtechnology Based Processes
Steam Reforming of Hydrocarbons
Microtechnology Based Processes
Steam Reforming of Hydrocarbons

Curtsey of Dr. Al-Khaldi
Microtechnology Based Hemodialyzer
Microtechnology Based Hemodialyzer
Microtechnology Based Desalination Capacitive Deionization Cell (CDT)
We expect the following advantages of Capacitive Desalination over best commercially available technology (RO Desalination)

- The concept can approach the theoretical limit on minimum energy consumption; initially, we are projecting energy consumption of 1.5 – 4.0 [kWh/m³] fresh water produced;
- Flexible capacity – from small to very large units (numbering-up v.s. scale-up)
- Possibility of use of renewable energy at the point of use (solar/wind)
- Lower capital investment;
- Lower operating cost;
Typical Development Steps

• Build and demonstrate a nominal size technology unit.

• Develop inexpensive large scale manufacturing technology for microscale devices.

• Educate new generation of PhDs capable of introducing Microtechnologies worldwide.

• Launch new small business ventures and create jobs.
Ensuring a sustainable future requires well-educated students who are not afraid of new technological world.

- Kasidid Asumingpong, M.Sc.
- James Parker, Ph.D
- Joy Das, M.Sc.
- Daniel Haller, Ph.D.
- Eric Anderson, Ph.D.
- Brian Reed, Ph.D.
- Eileen Hebert, M.Sc.
Thank you for your attention!