

Semiconductor Industry Speaker Series

"Advanced Thermal Management Materials and Low-Expansion PCBs"

Carl Zweben Advanced Thermal Materials and Composites Consultant

January 27, 2021

www.meptec.org

www.imaps.org

Carl Zweben PhD

Dr. Zweben, now an independent consultant, has directed development and application of advanced thermal management materials for over 35 years. His group at GE was the first to use Al/SiC (silicon carbide particle-reinforced aluminum) and other advanced materials in electronics and photonics thermal management. He also has developed low-CTE printed circuit boards. He was formerly Advanced Technology Manager and Division Fellow at GE Astro Space. Other affiliations have included Du Pont, Lockheed Martin and Jet Propulsion Laboratory. Dr. Zweben was the first, and one of only two winners of both the GE Astro Space One-in-a-Thousand and Engineer-of-the-Year awards. He is a Life Fellow of ASME, a Fellow of ASM and SAMPE, an Associate Fellow of AIAA, and has been a Distinguished Lecturer for AIAA and ASME. He has published widely, and consulted for many Fortune 500 companies, taught over 200 short courses and served as an expert witness.

ADVANCED THERMAL MANAGEMENT MATERIALS AND LOW-EXPANSION PCBs

Carl Zweben Ph. D. Life Fellow, ASME; Fellow ASM and SAMPE; Associate Fellow, AIAA; Senior Member, SPIE Advanced Thermal Materials and Composites Consultant E-mail: c.h.zweben@usa.net Website: http://carlzweben.com

MEPTEC – IMAPS Semiconductor Industry Speaker Series

January 27, 2021

OUTLINE

- Introduction
- Traditional thermal management materials
- Advanced thermal management materials
- Applications
- Future directions
- Summary and conclusions

INTRODUCTION

INTRODUCTION

- Reducing Size, Weight and Power (SWaP) key driver for many aerospace/defense and commercial applications
- Thermal management critical issue
- In addition to heat dissipation, thermal stresses are a major problem, resulting in
 - Warping
 - Fracture
 - Fatigue failure
 - Creep
- Deformation important for photonics

INTRODUCTION (continued)

 Thermal stresses caused primarily by coefficient of thermal expansion (CTE) mismatch

CTE Mismatch Causes Thermal Stresses

Source: US Air Force

MEPTEC - Advanced Thermal Management Materials

Copyright Carl Zweben

INTRODUCTION (continued)

- Weight (mass) important
 - Aerospace/defense systems
 - Portable commercial/consumer systems
 - Vibration
 - Shock/drop loads during shipping
- Cost critical

- Thermal problems similar for all semiconductors
 - Power
 - Microprocessors and GPUs
 - RF
 - Diode lasers
 - Light-emitting diodes (LEDs)
 - Concentrator photovoltaic (solar) cells
 - LCD and plasma displays
 - Detectors
 - Thermoelectric coolers
 - High-power laser and RF weapons

ADVANCED THERMAL MATERIALS WIDELY USED

- Traditional thermal materials inadequate for many applications
 - Date from mid 20th century
 - Impose severe design limitations
 - Some expensive
- Increasing number of advanced materials
 - Thermal conductivities up to 1700 W/mK
 - >4x copper
 - Low CTEs
 - Low densities
 - R&D to large volume production
 - Some cheaper than traditional materials

- Example of advanced thermal management material payoff:
 - Eupec/Infineon reports that replacement of IGBT module copper baseplates with AI/SiC:
 - Matches CTE of aluminum nitride substrate
 - Eliminates solder joint failure
 - Increases lifetime from 10 to 30 years

AI/SIC IGBT BASEPLATES ELIMINATE SOLDER FAILURE

"The failure mechanism does not exist any longer"

COPPER BASEPLATE Al/SiC BASEPLATE 4,000 CYCLES Ultrasonic Images Source: Eupec/Infineon

MEPTEC - Advanced Thermal Management Materials Copyright Carl Zweben

10

- Numerous traditional and new thermal materials
 - Many engineers only familiar with copper and aluminum
- Time constraint limits coverage of traditional and advanced materials
 - Selected materials discussed
- Seminar focus
 - Heat spreader materials used in modules, heat sinks, base plates, enclosures, etc.
 - Low-CTE printed circuit boards (PCBs)

PACKAGING LEVELS

Advanced Materials Used In All

Source: US Air Force (modified)

Copyright Carl Zweben

TRADITIONAL THERMAL MANAGEMENT MATERIALS

SEMICONDUCTOR AND CERAMIC SUBSTRATE COEFFICIENTS OF THERMAL EXPANSION (CTEs)

	CIE
MATERIAL	<u>(ppm/K)</u>
Silicon	2.5-4.1
GaAs	5.8-6.9
GaP	5.9
InP	4.5-4.8
SiC	4.2-4.9
Alumina (96%)	6.0-7.1
AIN	3.5-5.7
LTCC	4.5-7.0

TRADITIONAL THERMAL AND PACKAGING MATERIALS

	Typical k	CTE	Specific
MATERIAL	<u>(W/mK)</u>	<u>(ppm/K)</u>	<u>Gravity</u>
Copper	400	17	8.9
Aluminum	218	23	2.7
Kovar	17	5.9	8.3
Titanium	6.7	8.6	4.4
Tungsten	164	4.2	19.3
Molybdenum	142	5.2	10.2
W/Cu (85/15)	167	6.5	17
Mo/Cu (85/15)	184	7.0	10
Cu-Invar-Cu*	164	8.4	8.4
Cu-Mo-Cu*	182	6.0	9.9
E-glass/polymer**	0.3–1.0	12-24	1.6-1.9

* Inplane (through-thickness much lower)** Inplane

WHAT'S WRONG WITH TRADITIONAL MATERIALS?

- E-glass/polymer PCBs
 - High CTE: 12–24 ppm/K
 - Low thermal conductivity: 0.3-1.0 W/mK
- Aluminum
 - High CTE: ~23 ppm/K
 - Result: thermal stresses and warping
 - Requires underfills and/or <u>compliant</u> thermal interface materials (TIMs): grease, polymeric, soft solders
 - Thermal conductivity: ~200 W/mK
 - Higher values desired in many applications

WHAT'S WRONG WITH TRADITIONAL MATERIALS? (continued)

- Copper
 - High CTE: ~17 ppm/K
 - Requires underfills and/or compliant TIMs
 - Density ~ 3X aluminum (8.9 g/cc vs. 2.7)
 - Thermal conductivity: ~ 400 W/mK
 - Higher values desirable
- Greases
 - Messy to apply
 - Dry-out and pump-out
 - Silicone migration

WHAT'S WRONG WITH TRADITIONAL MATERIALS? (continued)

- Other compliant polymeric TIMs
 - Often greatest contributor to total system thermal resistance
- Compliant (soft) solders mostly indium based
 - Poor fatigue life (low yield stress)
 - Creep, intermetallics formation, corrosion, electromigration
 - Expensive

WHAT'S WRONG WITH TRADITIONAL MATERIALS? (continued)

- Traditional low-CTE materials all have significant deficiencies:
 - Kovar, Alloy 42, titanium, etc.
 - Very low thermal conductivities (<17 ppm/K)
 - High densities (except titanium)
 - Hard to machine
 - Tungsten/copper, molybdenum/copper, copper-Invar-copper, etc.
 - Most thermal conductivities < aluminum
 - High densities
 - Hard to machine
 - Expensive

THERMAL RESISTANCE OF COMMERCIAL TIMS

<u>Material</u>	Thermal Resistance $K = K/(M/cm^2)$
Calden	$\frac{\mathbf{K} - \mathbf{C} \mathbf{I} \mathbf{I} - \mathbf{V} \mathbf{V}}{\mathbf{N} - \mathbf{K} (\mathbf{V} \mathbf{V} / \mathbf{C} \mathbf{I} \mathbf{I} - \mathbf{I})}$
Solder	0.05
Thermal grease	0.2-1
Elastomeric pads	1-3
Thermal tapes	1-4
Phase change materials	0.3-0.7
Gels	0.4-0.7
Conductive adhesives	0.15-1

Solders Have Lowest Thermal Resistance

Source: D. Blazej, Electronics Cooling, Nov. 2003

DIRECT ATTACH WITH HARD SOLDERS DESIRABLE: USUALLY REQUIRES CTE MATCH

TRADITIONAL LOW-CTE PCBs

- E-glass/polymer PCBs (e.g. FR-4) have high CTEs
 12-24 ppm/K
- Results:
 - High thermal stresses and warping
 - Failure of solder joints, ceramics, etc.
 - Underfills frequently required
- Copper-Invar-copper (C-I-C) constraining layers used for decades to reduce PCB assembly CTE

Adds thermal conductivity to PCB

Advanced materials can replace C-I-C

ADVANCED THERMAL MANAGEMENT MATERIALS

ADVANCED THERMAL MANAGEMENT MATERIALS

- Revolutionary new materials steadily emerging
- Many with high thermal conductivities
 Up to 1700 W/mK (> 4X copper)
- Low CTEs
- Low densities
- R&D to large volume production
- Time constraint greatly limits materials covered

CLASSES OF ADVANCED THERMAL MATERIALS

- Monolithic carbonaceous materials
- Composite materials
 - Two or more materials bonded together
 - Some composites used for many years, e.g.
 - FR-4 glass/epoxy, copper/tungsten, etc.
- Types of composites
 - Polymer matrix composites (PMCs)
 - Metal matrix composites (MMCs)
 - Carbon matrix composites (CAMCs)
 - Ceramic matrix composites (CMCs)
- Monolithic carbons and MMCs key advanced thermal materials at this time

MONOLITHIC CARBONACEOUS MATERIALS

FLEXIBLE GRAPHITE

- Exfoliated natural graphite and pyrolytic graphite
- Flexible, foil-like materials
- Highly anisotropic

Inplane thermal conductivity, W/mK140 – 1500Vertical thermal conductivity, W/mK3 - 10Inplane CTE, ppm/K- 0.4Density, g/cc1.1-1.9

Source: GrafTech

HIGHLY-ORIENTED PYROLYTIC GRAPHITE (HOPG)

- Weak, brittle
- Highly anisotropic
- Typically encapsulated with metal or composite

Inplane thermal cond, W/mK	1300-1700
Vertical thermal cond, W/mK	~25
Inplane CTE, ppm/K	-1.0
Density, g/cc	2.26

Source: Advanced Ceramics Corp

COMPOSITE MATERIALS

COMPOSITE REINFORCEMENTS

Discontinuous Fibers, Whiskers, CNTs

Particles, Platelets

SILICON CARBIDE-PARTICLE/ALUMINUM (AI/SiC) MMCs

- First advanced thermal management material

 Work started in 1980s by speaker's GE group
- Now well established in commercial and aerospace applications
- Now made by multiple processes and manufacturers
- Some processes net-shape (no machining)
- Can be cheaper than W/Cu and Mo/Cu
- One type reportedly cheaper than copper
- "Eliminates fatigue failure" in IGBT modules
 - Lifetime increased from 10 to 30 years

CTE OF SILICON CARBIDE PARTICLE-REINFORCED ALUMINUM (AI/SiC) vs PARTICLE VOLUME FRACTION

SiC-PARTICLE/ALUMINUM (AI/SiC) COMPOSITES - MMCs

Properties depend on composition and process

Particle volume fraction, %	20 - 70
Thermal conductivity, W/mK	132 - 255
CTE, ppm/K	4.8 - 16.2
Density, g/cc	2.6 - 3.10
Modulus, GPa (aluminum = 70)	100 - 250

GRAPHITE PLATELET/ALUMINUM – MMCs

Anisotropic materials

	<u>AlGrp 4-750</u>	<u>AlGrp 7-650</u>
Thermal cond (x,y), W/mK	750	650
Thermal cond (z), W/mK	30	35
Inplane CTE, ppm/K	4	7
Density, g/cc	2.3	2.35

Source: Metal Matrix Cast Composites, Inc.

DIAMOND PARTICLE METAL MATRIX COMPOSITES USED IN INDUSTRIAL APPLICATIONS FOR DECADES

Diamond Particle/Copper Grinding Wheel Blank

Diamond Particle/Cobalt Rock Drill Bits

Sources: Kunime et al.; Element Six

DIAMOND PARTICLE-REINFORCED MMCs

- Matrices: copper, aluminum, silver, cobalt
- Properties isotropic

Thermal conductivity up to 983 W/mK CTE, ppm/K 4–12 Density, g/cc 2.8 - 6.4

LOW-CTE PCBs

- Nonwoven aramid (e.g. Kevlar 49) fiber/polymer
 PCBs have low CTEs
 - 7-9 ppm/K inplane
- Copper-Invar-copper (C-I-C) constraining layers used for decades to reduce E-glass/polymer PCB CTE
- Many advanced thermal management materials are potential replacements for C-I-C
 - Carbon fiber/polymer has been used

POTENTIAL PCB CONSTRAINING LAYER: ULTRAHIGH THERMAL CONDUCTIVITY CARBON/POLYMER

• Laminate geometry: [0/90]

Thermal conductivity, W/mK	~ 300
CTE, ppm/K	- 1
Density, g/cc (aluminum = 2.7)	1.8
Modulus, GPa (aluminum = 70)	240

APPLICATIONS

FLEXIBLE GRAPHITE USED IN SMART PHONES, TABLETS, DISPLAYS, LED LIGHTING

Source: GraphTech

Copyright Carl Zweben

HIGHLY-ORIENTED PYROLYTIC GRAPHITE (HOPG) INSERTS

Source: GE Advanced Materials

MEPTEC - Advanced Thermal Management Materials

Copyright Carl Zweben

MOLYBDENUM/COPPER COMPOSITE COMPONENTS – TRADITIONAL MATERIAL

Source: Plansee

THE FIRST SILICON CARBIDE PARTICLE-REINFORCED ALUMINUM (AI/SiC) MODULE (ca 1985)

${\sim}1/3$ THE WEIGHT AND 10X THE THERMAL CONDUCTIVITY OF KOVAR

Source: GE

HYBRID MODULE WITH AI/SiC BASE AND KOVAR LEAD FRAME

Source: LEC

AI/SiC POWER MODULE APPLICATIONS

GM EV1

Toyota Prius

F-22 Raptor

Shinkansen 700

Mars Pathfinder

Source: Thermal Transfer Composites

MEPTEC - Advanced Thermal Management Materials Copyright Ca

Copyright Carl Zweben

AI/SiC MICROPROCESSOR LIDS

Source: CPS Technologies

MEPTEC - Advanced Thermal Management Materials

Copyright Carl Zweben

AI/SIC POWER MODULE BASEPLATE IS 85% LIGHTER THAN ORIGINAL COPPER/TUNGSTEN

Source: SSDI

LIQUID-COOLED AI/SiC HEAT SINK

Source: CPS Technologies

MEPTEC - Advanced Thermal Management Materials

Copyright Carl Zweben

AI/SiC-HOPG HYBRID THERMOELECTRIC COOLER SUBSTRATE

Source: CPS Technologies

MEPTEC - Advanced Thermal Management Materials Copyr

Copyright Carl Zweben

CARBON FIBER-REINFORCED ALUMINUM MICROWAVE MODULES

Source: Metal Matrix Cast Composites

DIAMOND PARTICLE/COPPER LIDS

Source: Hermetic Solutions Group/RHP

TITANIUM GaN MODULE WITH DIAMOND PARTICLE/COPPER INSERTS

Source: Hermetic Solutions Group/RHP

HIGH-POWER GaN SPACECRAFT PACKAGE HAS LOW-CTE DIAMOND PARTICLE/SILVER BASEPLATE

Thermal Conductivity ~ 600 W/mK

Source: Thales Alenia Space, Plansee AGAPAC Project: Advanced GaN Package for Space

LOW-CTE ARAMID-FIBER MULTILAYER PCB

Phone Circuit

 Capacity 	80 cc
•Weight	83 g
 PWB Technology 	ALIVH
Material	ARAMID
Layers	6
Line width	60 µm
 Line space 	90 µm
 Laser Hole diameter 	150 µm

Source: Du Pont

E-GLASS/EPOXY PCB WITH CARBON FIBER/POLYMER CONSTRAINING LAYER

Source: Maxwell

CARBON FIBER/AL CONCENTRATOR PHOTOVOLTAIC ARRAY SPIDERS ELIMINATE SOLDER FAILURE

BeO Block Supporting GaAs Photovoltaic

Source: GE

LIGHTWEIGHT THERMALLY CONDUCTIVE CARBON/EPOXY COMPOSITE OPTICAL BENCH

Near-Zero CTE

FUTURE DIRECTIONS

FUTURE DIRECTIONS

- Thermal management will continue to be a problem in electronic and photonic packaging
- 3D architecture adds complexity
- Continuing development of new materials
 - Monolithic carbonaceous
 - Composites
- Reinforcements of interest
 - Carbon nanotubes and nanofibers (6,000 W/mK)
 - Graphite platelets (1500 W/mK)
 - Carbon fibers (900 W/mK)
 - Diamond particles (2,000 W/mK)

FUTURE DIRECTIONS (cont)

- Thermally conductive, electrically insulating composite materials
- Numerous other materials possible

SUMMARY AND CONCLUSIONS

SUMMARY AND CONCLUSIONS

- Thermal management critical problem in electronic and photonic systems
 - Heat dissipation
 - Thermal stresses from CTE mismatch
- Size, Weight And Power important
- Traditional materials have significant deficiencies
- Increasing number of advanced materials
 - Thermal conductivities up to 1700 W/m-K
 - Low, tailorable CTEs
 - Low densities
 - Some cheaper than traditional materials
 - Applications increasing steadily

WE ARE IN THE EARLY STAGES OF A THERMAL MATERIALS REVOLUTION

COPYRIGHT NOTICE

The presentation in this publication was presented at the MEPTEC– IMAPS Semiconductor Industry Speaker Series. The content reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does not constitute an endorsement by MEPTEC, IMAPS, or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies and may contain copyrighted material. As such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

www.meptec.org