Presented at: MEPTEC / IMAPS Semiconductor Industry Speaker Series May 20, 2020

Multi-disciplinary Simulation for 2.5D/3DIC Co-Design

Sooyong Kim Sr. Product Manager <u>sooyong.kim@ansys.com</u> 3DIC CPS Multiphysics

Evolution of Chip Design Complexity

Multiphysics signoff is a MUST for silicon success

• Thermal and thermal induced stress analysis for heat accumulation and thermal coupling by multi-dies

Challenges in 2.5D Stacking & Analysis Needs

Characteristic	Interpose	Physics based analysis enabled by			
Characteristic	Ideal Properties	Glass Silicon		Organic	Ansys
Electrical	High ResistivityLow Loss				2.5D Stacked Die Analysis PI , SI , EM Workflows
Thermal	High ConductivityCTE matched to Si				2.5D Stacked Die Analysis TI Workflow
Mechanical	High StrengthHigh Modulus				2.5D Stacked Die Analysis Mechanical Analysis Workflow
Physical	 Smooth Surface Finish Large area availability Ultra thin 				2.5D Stacked Die Analysis Structural Analysis Workflow
Chemical	Resistance to process chemicals				
Processability	Ease of via formation				
Cost	Low cost per I/O at 25um pitch				

Source: Phil Marcoux , www.allvia.com

//nsys

ANSYS Multiphysics Simulations for Electronics Systems Core Technologies

Reality of Electronics Market Ecosystem

Application Specific Integrated Circuit Use Case

CPS: Chip Package System CPM: Chip Power Model CTM: Chip Thermal Model CSM: Chip Signal Model CECM: Chip ESD Compact Model RPM: RTL Power Model CPA: Chip Package Analysis CMM: Custom Macro Model

Ansys Multiphysics solutions for 2.5D/3DIC design

Power Integrity

• Full PDN Power Integrity Signoff for Complex 2.5D/3DIC analysis

ElectroThermal/Mechanical Integrity

• Full ElectroThermal/Mechanical Integrity Sign off for Complex 2.5D/3DIC analysis

Power Induced Signal Integrity

• Chip Package System aware Power induced Signal Analysis for High Capacity HBM 3DIC structure

System Aware 3DIC Chip Level PI analysis Flow concurrent analysis

Example Design Structure : HBM MEMORY (Full Detail Layout) + Logic Processor (Full detail Layout) + Interposer (Full detail Layout) + Package (Full detail Layout)

Typical Design Size : *Multi-Billion Node Counts* Total Bump Count : > 100K *Runtime : ~ 5Hrs*

2.5D/3DIC RedHawk-SC onchip power integrity maps

Full die and Interposer reports are in one session, 900mm^2 interposer size

System Aware 3DIC Chip Level PI analysis Flow model based mixed with concurrent analysis

//nsys

How Ansys Delivers The Required Capabilities

Power Integrity		
Engineering Challenges	Ansys Capabilities	Example Outputs
 Improve power efficiency Verify Power Delivery Network Power planes and Decoupling Meet emission compliance targets Minimize Electromigration 	 Signoff PDN from Transistor to system 2D/2.5D/3DIC support Chip aware system co-analysis System aware chip co-analysis Multiscale modeling : Chip Power Model, Custom Macro Model, Chip Model Analyzer 	 Transient Power noise Current signature Voltage drop Impedance Profile Optimized Decoupling schemes Power/Ground Plane Resonance
Current crowding Voltage	e drop at IC level to the set of	Electrical Model

Ansys Chip Package System ElectroThermal/Mechanical Flow

RedHawk-SC ElectroThermal Analysis Result Full 3DIC detailed Temperature Profile Maps

ElectroThermal co-analysis

How Ansys Delivers The Required Capabilities

•

٠

Engineering Challenges

- FinFET Thermal Effects
- Joules heating
- Power dissipation
- Thermal runaway
- Thermal-induced stress

Full detailed Thermal for Chip Package PCB

ElectroThermal with Joule heating with bump current

Joule Heating with DC current

Example Outputs

- Heat map
- Temperature Contours
- Velocity Vectors
- Stress, deformation

Full System Level CFD thermal solver with air flow

Ansys Capabilities

Chip level Self heat analysis

CFD based thermal solver

Chip Thermal Model

Chip-aware system thermal analysis

System aware chip thermal analysis

Chip Package System aware PSI Analysis for High capacity HBM Prototyping and signoff

2.5D/3DIC CSM Signal Integrity Power induced Signal Integrity analysis

JEDEC reports am Timing Noise Jitter Period Jitter Clock Jitter Trigger

5 ✔ DQa4/PAD WDQSa0/PADP \$ 0.792 10

6 ✔ DQa5/PAD WDQSa0/PADP \$ 0.792 10

7 ✔ DQa6/PAD WDQSa0/PADP \$ 0.792 10

8 V DQa7/PAD WDQSa0/PADP \$ 0.792 10

1 V DQa0/PAD WDQSa0/PADP \$ 0.792 20

2 ✔ DQa1/PAD WDQSa0/PADP \$ 0.792 20

4 ✔ DQa3/PAD WDQSa0/PADP \$ 0.792 20

5 V DQa4/PAD WDQSa0/PADP \$ 0.792 20

6 ✔ DQa5/PAD WDQSa0/PADP \$ 0.792 20

7 🖌 DQa6/PAD WDQSa0/PADP 🗢 0.792 20

8 ✔ DQa7/PAD WDQSa0/PADP \$ 0.792 20

_	_		•	b	Start Time(ns)	End Time(ns)	Period Jitter(ns)	Pass/Fail
	1	✔ DQa0/PAD	WDQSa0/PADP 🖨	0.792	10	200	0.0715096	N/A
	2	✔ DQa1/PAD	WDQSa0/PADP 🖨	0.792	10	200	0.0720017	N/A
	3	✔ DQa2/PAD	WDQSa0/PADP	0.792	10	200	0.0709741	N/A
	4	✔ DQa3/PAD	WDQSa0/PADP	0.792	10	200	0.0715371	N/A
	5	✔ DQa4/PAD	WDQSa0/PADP \$	0.792	10	200	0.0728677	N/A
	6	✔ DQa5/PAD	WDQSa0/PADP	0.792	10	200	0.0710761	N/A
	7	✔ DQa6/PAD	WDQSa0/PADP	0.792	10	200	0.072928	N/A
	8	✔ DQa7/PAD	WDQSa0/PADP	0.792	10	200	0.0700145	N/A

5 🖌 DQa4/PA	AD WDQSa0/PADP	÷	0.792	10	200	0.0728677	N/A
6 🖌 DQa5/PA	AD WDQSa0/PADP	\$	0.792	10	200	0.0710761	N/A
7 🖌 DQa6/PA	AD WDQSa0/PADP	¢	0.792	10	200	0.072928	N/A
8 🖌 DQa7/PA	AD WDQSa0/PADP	\$	0.792	10	200	0.0700145	N/A
SelfDelay Target	Waveform Timing Reference	1	Eyediagra Vref(V)	m Timing Nois Start Time(ns)	e Jitter Perioo End Time(ns)	Jitter Clock Period Jitter(ns)	Jitter Trigge Pass/Fail
1 🖌 DQa0/P/	AD WDQSa0/PADP	¢	0.792	10	200	0.174517	N/A
2 🖌 DQa1/P/	AD WDQSa0/PADP	\$	0.792	10	200	0.174671	N/A
3 🖌 DQa2/PA	AD WDQSa0/PADP	\$	0.792	10	200	0.174613	N/A
4 🖌 DQa3/P/	AD WDQSa0/PADP	¢	0.792	10	200	0.174773	N/A

0.17461

0.174908

0.174614

0.174919

0.605613

0.600637

0.604458

0.602089

0.597891

0.602697

0.597195

0.604444

N/A

200

200

200

200

150

150

150

150

150

150

150

150

SelfDelay | Waveform Timing | Eyediagram Timing | Noise | Jitter Period | Jitter Clock | Jitter Trigger Target Reference Vref(V) Start Time(ns) End Time(ns) Period litter(ns) Pass/Fail

******** Buffer DRAM Si Interposer

CMA generates CPM with power noise connecting to a Channel Model in CSM for Signal Integrity Analysis

Design Structure : HBM2E (Chip Power Model) + Logic Processor + Interposer + Package **Design Size :** 30mm x 30mm (Interposer size) 50mm x 50mm (Package size) **Total Node Count : Over 5Billion Total Bump Count : Over 200K**

How Ansys Delivers The Required Capabilities

