

Presented at: MEPTEC - IMAPS Semiconductor Industry Speaker Series October 28, 2020

Co-Packaged Optical-IO The Promise and the Challenges

10/28/2020 Chuan Xie

Outline

- What is co-packaged optical IO?
- ▶ Why co-packaged optical IO?
- Where are we now?
- Challenges to commercialization

What is Co-packaged Optical – IO?

Optical transceiver (aka "EO converter" or "optical engine") inside IC package

- Not monolithically integrated on IC die
 - Internal interface to IC: low power, highly parallel, lower data rate, electrical -
 - External interface: high speed, high bandwidth density optical, directly coupled to fiber

Switch package

Silicon Photonics

Optical

Components

Why Co-packaged Optical – IO?

- Moving data between IC and optical TRx across linecard harder at higher data rate
 - Equalization: high power consumption
 - FEC: BW overhead, power consumption, latency
- Aggregated bandwidth
 - Optics on faceplate cannot support switch BW
- Fully packed faceplate impedes airflow
- Moving optics inside package
 - Improve energy efficiency (less equalization)
 - Increase bandwidth density (with WDM)
 - Reduce latency (no FEC)

How data move from IC to optical transceivers today

400G QSFP-DD power consumption 12W Energy efficiency: 30pJ/bit

TA1: Photonically Enabled MCMs

]	Phase 1	Phase 2	Phase 3 100T technology demo* AND Differentiating Access 100 Tbps	
Key outcomes	10T technology demonstration*	Enhanced 10T demo* AND Packaged MCM demo		
Aggregate bandwidth	10 Tbps	10T demo: 10 Tbps MCM: proposer defined		
Energy per bit	2.5 pJ/bit	1 pJ/bit	1 pJ/bit	
Edge bandwidth density	1 Tbps/mm	2 Tbps/mm	2 Tbps/mm	

36 ports in 1RU, supporting 14.4Tbps

Silicon Photonics for Integrated Optics (datacom)

- Silicon photonics: photonics components and circuits built on silicon wafers using CMOS compatible processes
 - High volume production in CMOS fabs with advanced tools and processes
 - Built on SOI wafers buried oxide (BOX) necessary as bottom cladding of Si waveguide
 - Si makes excellent waveguides and supports integration photonics circuits
 - Transparent to light with wavelength >1.1um
 - Strong guiding allows small waveguides (<0.5um wide) and tight bends (r=5um)
 - Assortment of high-quality passive components available, but WDM components remains a challenge (more later)
 - High speed modulation based on plasma dispersion effect
 - Epitaxial growth of germanium on silicon well developed process
 - High speed detectors (O-band to C-band)
 - Electro-absorption modulator (Franz-Keldysh effect)

GlobalFoundries Si Photonics Platform

Fundamental challenges & their mitigations

- Si does not produce light with electrical pumping
 - Die bonding of III-V gain medium for on wafer laser
 - Efforts in native light source not yet practical
 - Off-wafer (external) light source
- Phase error in Si waveguide
 - Caused by small variation in WG width or thickness
 - Many effective WDM devices (e.g. AWG and Echelle grating) built on other platforms are not manufacturable in Si
 - Phase tuning effective partial solution
 - Thermal tuning (local heaters)
 - Tuning with carrier injection (section of forward biased PIN)
- Temperature sensitivity (index change with temp)
 - Temperature insensitive design
 - Thermal tuning

Transmission spectra of same ring resonator on 20 different reticle sites of same wafer

Technology Choices for Co-packaged Optical – IO

- Active components for Si TRx
 - Modulator choices for Tx
 - MZM, MRM, and EAM
 - Photodetector choices for Rx
 - Ge PIN or APD
- Best choice for co-packaging
 - Small size, low power, supporting WDM
 - Modulator choice: MRM
 - Detector choice: Ge PIN

modulator type	size	driving power	speed	temperature sensitivity	wavlength selectivity	operating wavelength	WDM
MZM			very good				CWDM & DWDM
(balanced)	large (L~2mm)	high	(segmented)	low	not selective	O and C band	need MUX/deMUX
							DWDM
MRM	small (R<10um)	low	good	high*	very selective*	O and C band	with external source
							does not work well
EAM (FK)	small (L<100um)	low	good	medium	selective	C band	with WDM
* mitigated w	ith thermal tuner						

More on Si micro-ring modulators (MRM)

MRM optical eye diagrams, Xilinx/IMEC

- Works well with a DWDM light source
- High speed to support >50GB symbol rate
 - BW > 35GHz

Architectural Options

- Monolithic vs. heterogeneous
 - Early efforts all on monolithic
 - Heterogeneous offers more flexibility
 - Choice of base wafer. Photonics and electronics favor different SOI
 - Separate process node for electronics and photonics
 - Monolithic still alive (GF 9WG & 45SPCLO)
 - Cost and convenience
- Coupling options
 - Surface coupling grating couplers
 - Wavelength and polarization dependency. Passive alignment possible
 - On wafer testing
 - With beam expanding µ-lens -> connector with relaxed alignment tolerance
 - Edge coupling
 - With V-grooves butt couple to fiber, passive alignment. Incompatible with TSV
 - Free-space coupling w/o V-grooves. Active alignment. Free space coupling optics

J. Lightwave Tech., V 38, No. 13, July 1, 2020

suspended SSC

Ecosystem buildup

- Co-package optical IO technology driving force
 - Data center and HPC customers want it
 - Microsoft & Facebook form "Co-packaged Optics Collaboration" (http://copackagedoptics.com/)
 - IC companies are evaluating feasibility
 - Startups and established photonics companies building optical engines for CPO
 - CW-WDM MSA recently formed to define WDM channel plan for CPO (https://cw-wdm.org/)
- EDA tool vendors adding photonics capabilities
 - Curvilinear layout
 - Device models, co-simulation support, photonics LVS
- Si Photonics foundries
 - R&D fabs and smaller commercial foundries have been providing MPW or dedicated wafer runs
 - GF advancing 45SPCLO (migrating from 9WG) photonics and CMOS (monolithic) integration
 - Other major foundries testing the waters, seriously assessing business opportunity and potential
- Single mode fiber ribbons and multi-fiber connectors (MPO) gained traction in optical transceivers
 - More to be done to support co-packaged optics

Challenges for Co-packaged Optical – IO

- Robust and efficient WDM light source
 - Can one of the comb laser schemes deliver the performance?
 - Conventional DFB array + MUX work as external source, but not an elegant solution
- Wafer level testing, KGD identification
 - How to perform wafer level testing when edge coupling is used?
 - Can PCM parts provide sufficient information?

Optical assembly

- Fiber coupling and alignment
 - Fiber assembly is a new process in IC packaging
 - Can optical sub-assemblies survive solder reflow?
 - Active alignment is challenging even in conventional optical transceiver manufacturing
 - High cost, low through put
- Reducing coupling loss via both design and process improvement still critical
 - Lower loss = higher energy efficiency, higher link budget, and lower latency

Challenges for co-package optical – IO, cont'd

Fiber management

- Hundreds of fibers per package
 - Fiber ribbons coming out from all 4 sides?
- Handing of fiber ribbons
- Need breakout to allow flexible connectivity
 - some fibers in a ribbon may need to connect to local light sources
 - not all fibers in a ribbon are connecting same two nodes
- What about fiber breakage?
 - Fiber receptacles preferred over pigtails externalize fiber breakage risk
 - Include redundancy in design?

New thermal management challenges

- A 100Tbps switch produces tremendous amount of heat
 - even with energy efficient optical IO
- Would optical IO hardware on the peripheral of package interfere with heat removal?

Source: Intel.

Promising comb laser source for WDM

Comb laser source

- No wavelength multiplexing needed
- Uniform line spacing
- Mode locked QD comb
 - Elegant single chip solution with high WPE
 - Performance concerns
 - RIN (noise) of individual laser lines
 - Wavelength range
- Non-linear Kerr comb
 - Wide spectrum with flexible spacing
 - Draw backs
 - Channel power uniformity
 - Conversion efficiency (simulation > 60%. Reported \sim 40%)

200 mW pump power in bus waveguide ٠

Kerr comb

To summarize

- Co-packaged optical IO promises
 - Significant improvement in energy efficiency
 - Significant increase in bandwidth density
 - Potential reduction in latency
- Basic silicon photonics-based CPO technology in place
- Ecosystem is building up
- Many challenges still being addressed
 - Robust WDM and efficient light source
 - Wafer level testing for KGD
 - Fiber attachment, optical alignment process development
 - Fiber management

Backup

Fiber ribbon assembly into V-grooves by IBM

E XILINX.

XILINX

Thank You

