

SI-WARE SYSTEMS (SWS) IN BRIEF

Established in 2004 as a design house and IP provider

Demanding A/M-S & RF solutions with emphasis on timing, sensing and wireless applications

Founded by experts from the IC and MEMS industries

Evolved into a standard products and custom ASIC provider

- 3 distinct divisions
 - ASIC Solutions (ASD): MEMS interface ASICs
 - Timing Products (TPD): all silicon clock oscillator SCO™
 - Optical MEMS Technology (OMTD): Optical MEMS (MOEMS) based products

Privately held, growing and profitable since inception

More than 90 design and product engineers

Headquarters in Cairo, Egypt and U.S. Subsidiary in Los Angeles, California

5i-Ware Confidential © | May 22, 2014 | Reducing Development Time for MEMS Devices |

MEMS DEVELOPMENTS

Advances in MEMS manufacturing and packaging technologies

More and more companies are doing MEMS

- Established semiconductor companies adding MEMS capabilities
- Many startups emerging with very promising MEMS devices

More access to MEMS + exploding market = increased competition

- Quick development time required
- MEMS development already challenging
- ASIC development requires a solid understanding of the MEMS
 - ☐ If MEMS is not validated then relying on models

-Ware Confidential © May 22, 2014 Reducing Development Time for MEMS Devices

CHALLENGES IN ASIC DESIGN FOR MEMS

ASIC in a MEMS Product

MEMS Module = MEMS + ASIC in a Package

Si-Ware Confidential ® May 22, 2014 Reducing Development Time for MEMS Devices

ASIC DESIGN CHALLENGES FOR MEMS

What an ASIC can do for MEMS?

Sense

C, R, L, resonance frequency → digital output

Actuate

- Precision bias voltages
- High voltage actuation

Compensate

- MEMS and ASIC process
- Voltage and temperature variation
- Nonlinearities
- Trimming and calibration infrastructure → storage (NVM/Flash)

Communicate - Control - Process

- Serial interface to read/write data (I2C, SPI, custom)
- Wireless interface (Bluetooth, ZigBee, ISM)
- Control loops
- Digital post processing

Si-Ware Confidential © May 22, 2014 Reducing Development Time for MEMS Devices

ASIC DESIGN CHALLENGES FOR MEMS

IC Design Expertise Needed

Depending on the performance requirements, but most probably

- Mixed-signal system design and verification
- High resolution data converters
- Precision references
- Low jitter clock generation
- DSP and signal control
- Temperature sensing and compensation techniques
- Power management
 - Voltage charge pump, linear regulators, etc.

i-Ware Confidential © | May 22, 2014 | Reducing Development Time for MEMS Devices

ASIC DESIGN CHALLENGES FOR MEMS

MEMS Interfacing Issues

Typical issues arise from un-modeled or unidentified effects by MEMS developers

- Electrical parasitics (capacitance, resistance)
- Parasitic oscillation modes
- Nonlinear effects
- Design parameters temperature dependency of MEMS device
- Non idealities in MEMS manufacturing
 - Alignment mismatch (mechanical coupling, off-axis error)
 - Electrical mismatch (offset capacitance)
 - Quality factor variation
 - MEMS sensitivity variation

Some sensor specs depend on the sensor architecture

- ☐ High correlation of MEMS device specs and readout circuitry specs
- Overall MEMS performance is affected by the selected architecture

Many design iterations in MEMS development

- MEMS main parameters can vary from design to design
 - Change in resonance frequency
 - Change in electrical signal ranges
 - Changes in actuation voltage requirements

Many MEMS specs can not be estimated or calculated without testing in the lab

5i-Ware Confidential © | May 22, 2014 | Reducing Development Time for MEMS Devices |

MEMS SENSOR DEVELOPMENT LIFE CYCLE

--Ware Confidential © May 22, 2014 Reducing Development Time for MEMS Devices

INERTIAL SENSOR DEVELOPMENT PLATFORM

SWS61111

ASICHighly Configurable

Communication Board
USB Powered & Operated

Software Easy-to-Use GUI

Si-Ware Confidential ©

HIGH PERFORMANCE INERTIAL SENSING ASIC

SWS1110

Single-axis MEMS accelerometer and gyro interface

OL & CL (force-feedback) operation

Highly configurable

■ Used successfully with several gyros and accelerometers

Key Features

- Ultra low-noise achieves noise < 50 zF/√Hz
- Programmable front-end with trimmable ranges
- High performance ADC with 17.5b ENOB
- Programmable actuation voltage (2V up to 8V)
- Full temperature compensation
- 14b temperature sensor integrated
- Proprietary technology to eliminate harmful coupling
- Supports resonance frequency up 30kHz
- Self clocked with low jitter PLL
- Digital output, SPI
- Self test indicator

INERTIAL SENSOR DEVELOPMENT PLATFORM

SWS61111

Supports inertial sensors with

- Different drive frequencies
- Different sensitivities
- Different capacitance ranges
- Different loop configurations (OL or CL)

MEMS sensor parameters measured

- Resonance frequencies
- Existing parasitic modes
- Quality factor

High Performance Gyro

High performance, single-axis gyro

■ Directly matched SWS1110 ASIC

Assess early stage gyro in preparation for final design and commercialization

Si-Ware Confidential ® May 22, 2014 Reducing Development Time for MEMS Devices

High Performance Gyro

Drive loop and oscillation non-linearity

- A working drive loop helped to identify highest obtainable drive amplitude
- Comparison with simulations

Varying Oscillation at Higher Drive Amplitudes

Stable Oscillation at Lower Drive Amplitudes

High Performance Gyro

Sense path characterization

- White noise actuation injected by ASIC
- Parasitic mode of operation was affecting CL operation

Parasitic Mode of Operation

2-Axis Consumer Gyro

2-axis gyro for Optical Image Stabilization (OIS)

- Small size and low power
- Not a direct match for the SWS1110 ASIC

Had initial gyro prototypes and needed to characterize and evaluate

■ Module prototypes needed to demonstrate to customers

Platform approach

- □ Daisy chained two ASICs together to create a platform that could work with a multi-axis device
 - Master slave configuration

2-Axis Consumer Gyro

Platform was used along the different phases of development

- Characterize gyro parameters and non-idealities
 - Optimizing and finalizing gyro design
 - Optimizing MEMS manufacturing process
 - Building a complete and accurate gyro model for ASIC development
- Demonstrate complete solution to customers
 - Valuable feedback on system specification
 - Ensures customer satisfaction from first silicon
- Optimizing and validating top level system trade offs
 - Studying different system level trade offs through the wide programmability of the ASIC
 - Studying and optimizing trade offs on the gyro level

5i-Ware Confidential © | May 22, 2014 | Reducing Development Time for MEMS Devices | Total Confidential | Reducing Development Time for MEMS Devices

2-Axis Consumer Gyro

Quadrature error and temperature dependency

- Temperature evaluation indicates large quadrature error variation of yaw axis compared to roll axis
- Architecture of new customized ASIC designed to solve this behavior discrepancy

Temperature Evaluation Roll Axis - Quadrature Error Signal

Quadrature Vs. Temperature 90 80 70 Quadrature (fF) 60 50 30 20 10 65 55 45 35 25 15 Temperature (C)

Temperature Evaluation Yaw Axis - Quadrature Error Signal

Challenges

- MEMS development
- ASIC development for MEMS devices
- MEMS + ASIC as a final product

Time to market is critical

Capabilities needed in parallel

- MEMS evaluation and characterization
- Electronics development

Platform approach with validated electronics drastically reduces development time

Si-Ware SYSTEMS

EVP W/W Marketing & Business Development +1-818-790-1151, x101

scott.smyser@si-ware.com

