

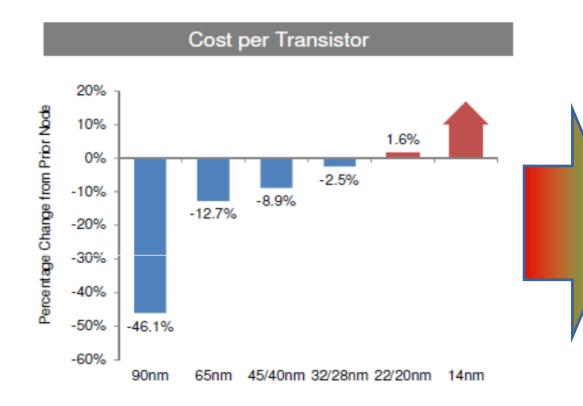
The Future of Packaging and Cu Wire Bonding Advances

Ivy Qin

Introduction

- Semiconductors have been around for over 70 years
- Packaging is playing a more and more important role, providing low cost high performance solutions.
- Wire bonding technology will continue to be the most popular interconnect method in the foreseeable future.
- Most recently, advances in Cu Wire Bonding enabled wire bonding for advanced nodes devices including 28 and 20 nm, and extended capability to low cost packages such as QFN.
- We are also developing technologies such as thermocompression flip chip to provide cost effective solution for high performance packages.

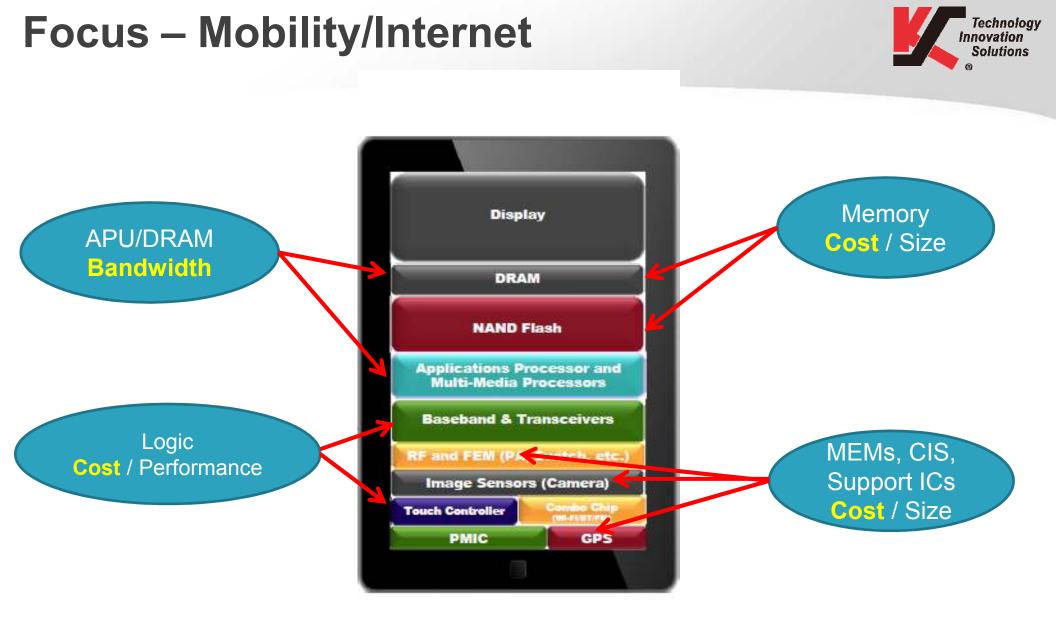
Semiconductor Industry: Cost is King

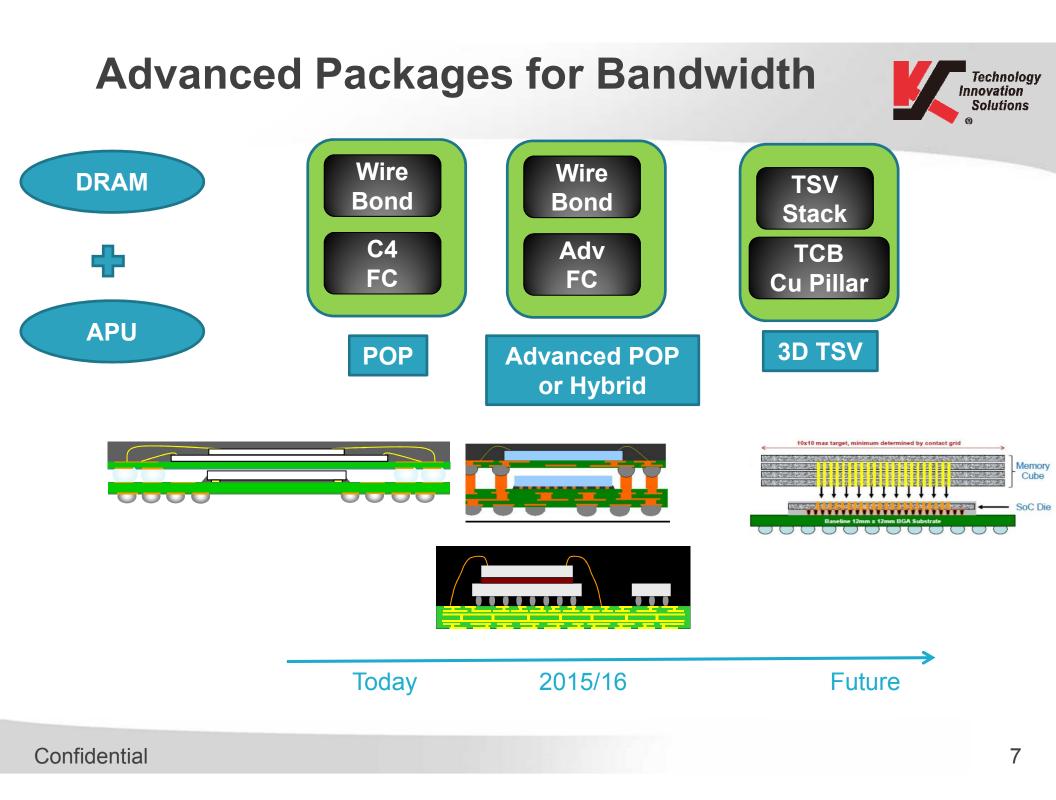


Slow-down of Moore's Law Drives Advanced Packaging

Performance and efficiency improvements at lower cost through packaging innovation

Packaging Trend

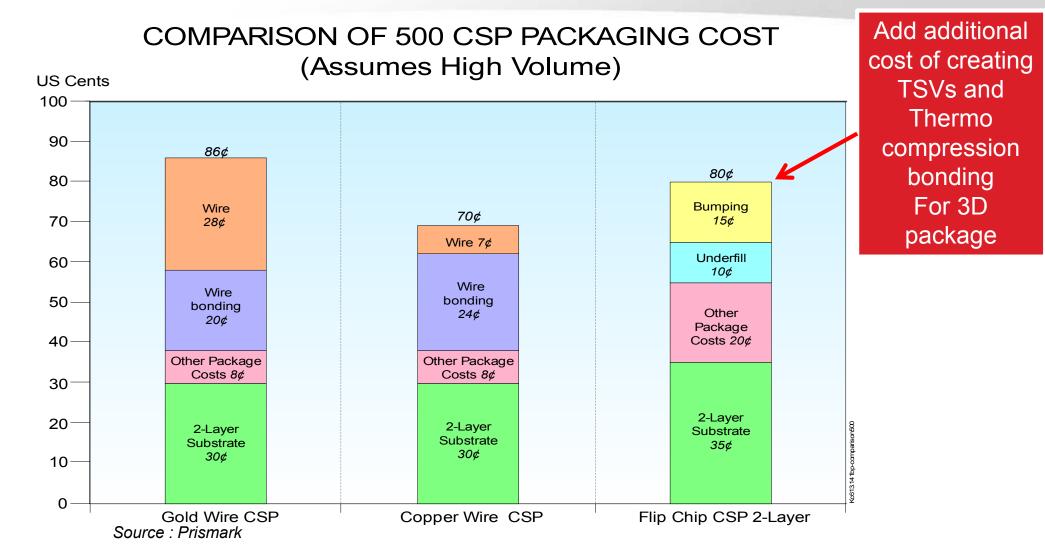

(Bn Units)	2011	2012	2013	20 18	CAAG R 2013 - 2018
DIP/SOT	4.3	4.1	4	3.4	-32%
SO/TSOP/SOT	78.5	76.8	81.3	90	2.1%
QFPALCC	18.3	17.5	17	15	-25%
QFN	20.5	19.8	27	56	(16%)
Wire Bond CSP	8.1	7.4	8.4	10.7	3.0%
Stacked CSP	6.7	6.9	8	11	6.6%
BOC for DRAM	13.5	12.5	11	7	-86%
Wire Bond BGA	1.1	1	0.9	0.8	-2.3%
COB (Wire Bond)	10.7	11.4	12	15.5	5.3%
Flip Chip CSP	1.3	2.3	3.0	7.4	20 %
Flip Chip CSP for DRAM (aka FC BOC)	0.2	0.7	1.4	6.0	32%
Flip Chip BGA/PGA/LGA	1.1	1.1	1.1	1.1	0.0%
DCA Flip Chip	5.5	5.5	5.7	6.5	2.7%
Wafer CSP (FC)	9	9.8	13	28.5	17 %
COG	4.6	4.9	5,4	7.6	7.1%
COF	3.3	3.2	32	3.5	1.8%
Subtotal Wire Bond	161.7	157.4	169.6	209.2	4.3%
Subtotal Flip Chip	25	27.5	32.8	60.6	13.1%
ICTOTAL	186.7	184.9	202.4	269.8	0.3%
		K			

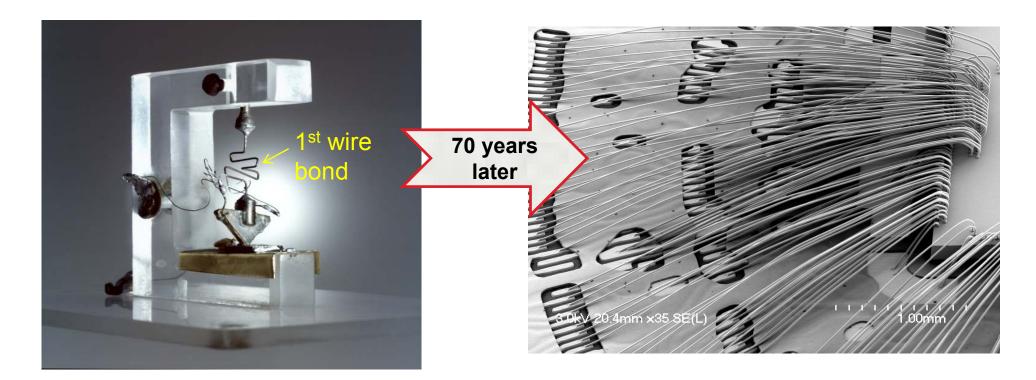

84% is wire bonded

Faster growth in Flip Chip

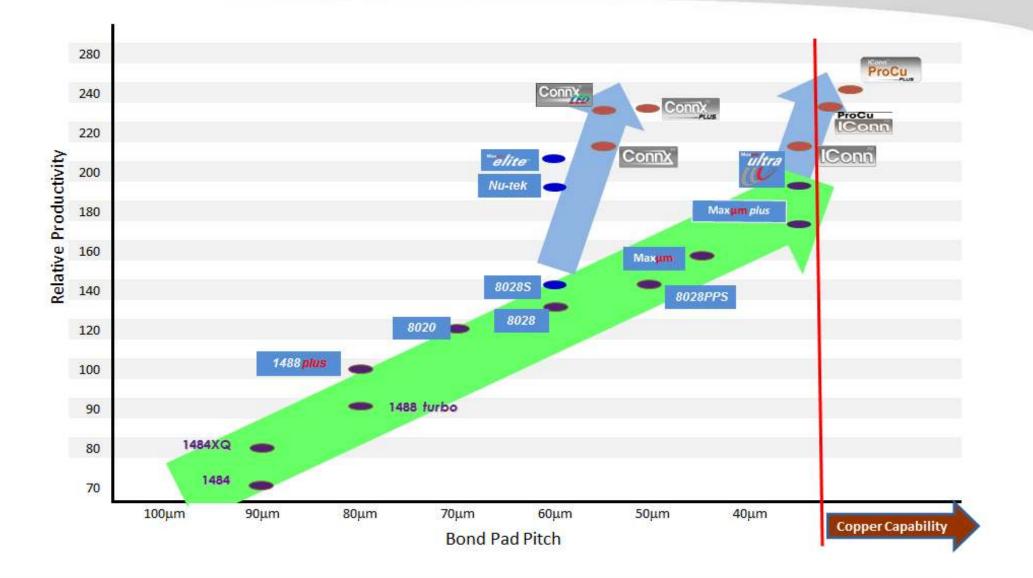
5

Source : Prismark

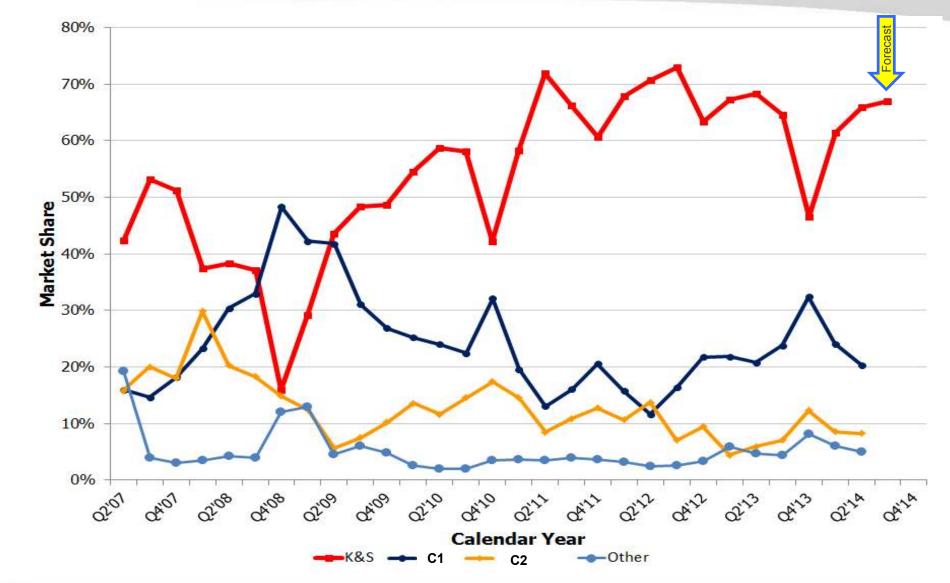


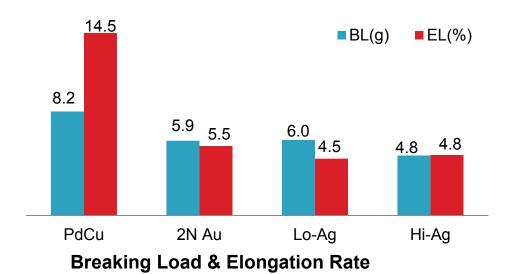

Package Cost

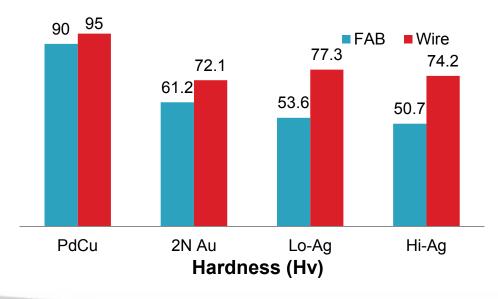
Wire Bonding Evolution

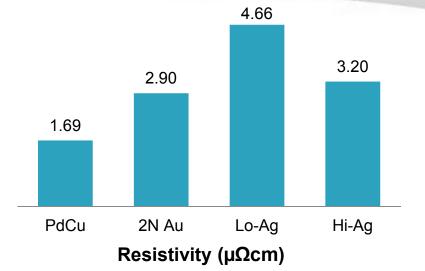


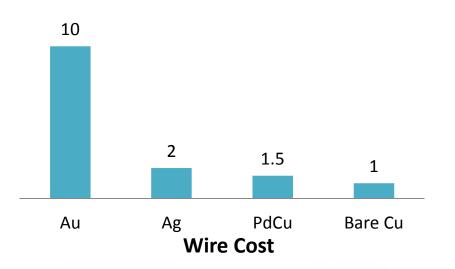
Replica of the first transistor (1947) Source: Bell Labs Cu Wire Bonded Device >1000 wires (2014) Source: K&S

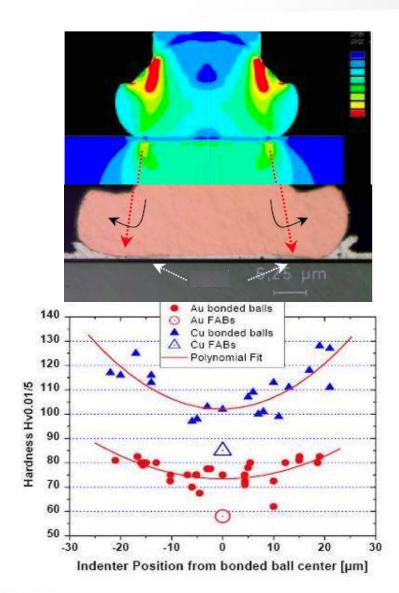

Ball Bonder Evolution

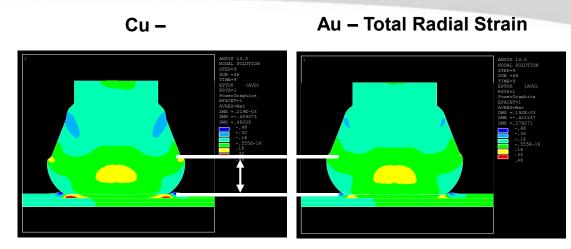

Automatic Ball Bonder Market Share Trend





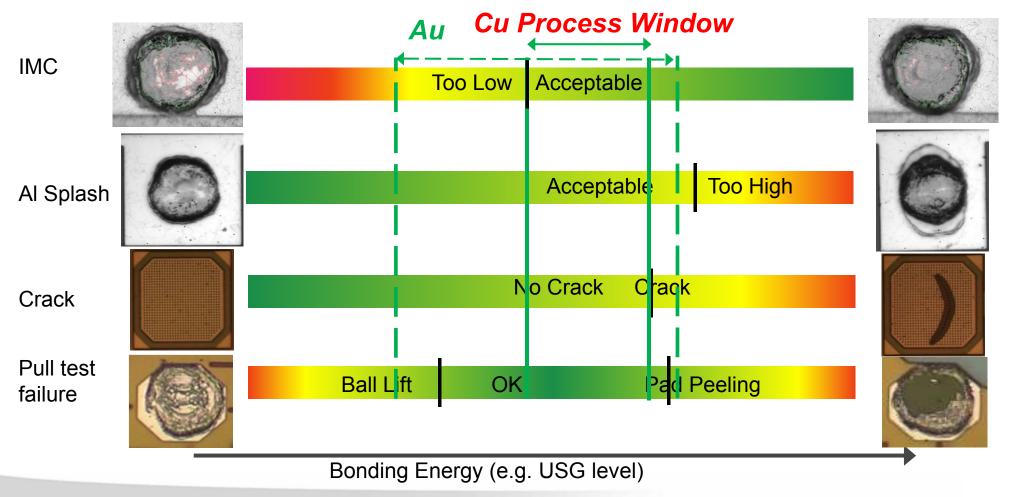

Bonding Wire Comparison


Advantages of Cu Wire Bonding

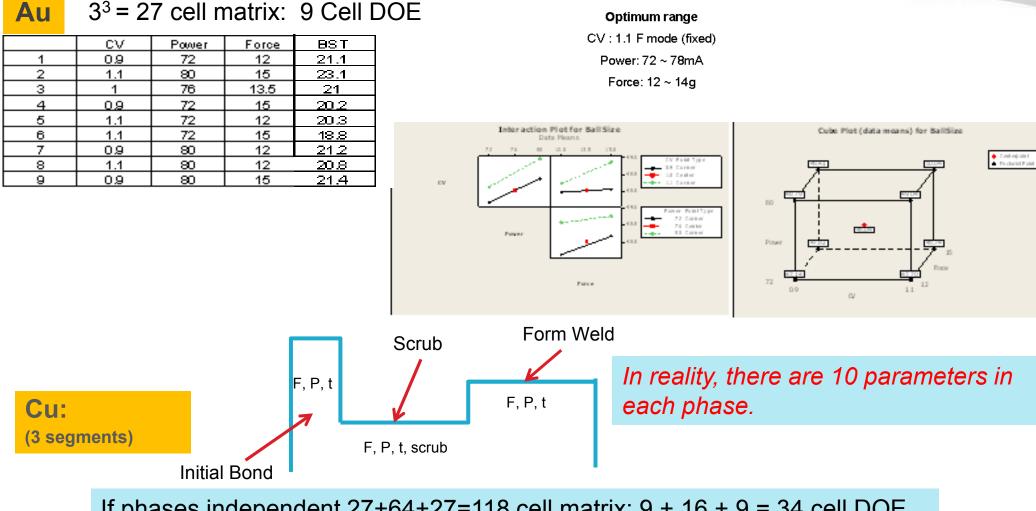


- The main advantage of Cu wire bonding is the lower cost.
- It also has higher thermal and electrical conductivity.
- It has higher mechanical strength for better wire bond looping performance which is the key for high I/O count devices.
- Cu IMC growth rate is much slower than Au and Ag. It has improved intermetallic reliability in high temperature application.
- Cu wire bonding is easily adaptable to existing assembly infrastructure.

Cu Wire Bonding Challenges



- Cu oxidizes: it is hard to bond to, high energy is often required to bond Cu.
 Pad damage (peeling, crack, Al splash) is often an issue.
- Cu is also harder, which aggravates the above issues.


Traditional Cu Wire Bonding Process

- Traditional Cu process window is small comparing to Au.
- Low end is limited by poor bondability (low IMC%, NSOP).
- High end is limited by pad damage (Splash, peeling, crack).

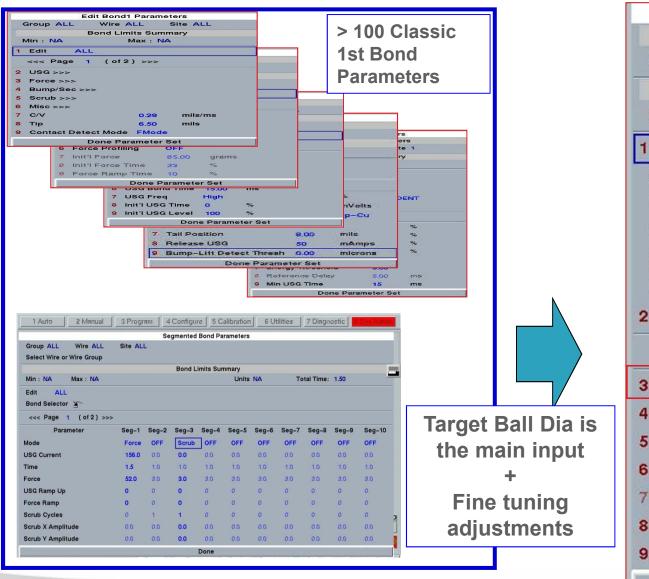
Complexity in Optimizing Cu Processes

If phases independent 27+64+27=118 cell matrix: 9 + 16 + 9 = 34 cell DOE if dependent $10^3 = 1000$ point matrix: $10^2 = 100$ cell DOE

Technology

Innovation Solutions

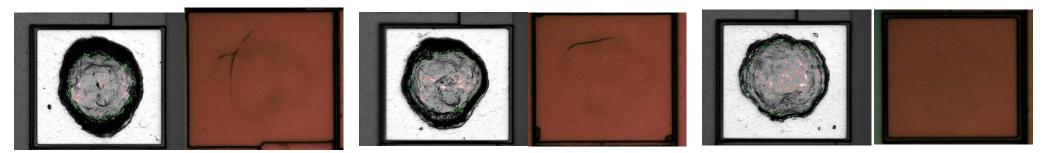
Copper Wire Optimized Bonder



- A robust Cu process is *more complicated* than Au
- ProCu Processes were developed to address this challenge with a Response Based Parameters concept
 - Auto calculate Power/Force/Time based on Target Ball Diameter to deliver optimal Cu process
 - Reduce the total number of parameters, with ProCu5 process, we only need to fine tune 2-3 adjustments for most applications
- ProCu Processes are running in production.
 - Proven to be easier to achieve robust process with higher IMC, less Al splash, eliminating crack and peeling
- We have reached our objectives for Cu wire bonding

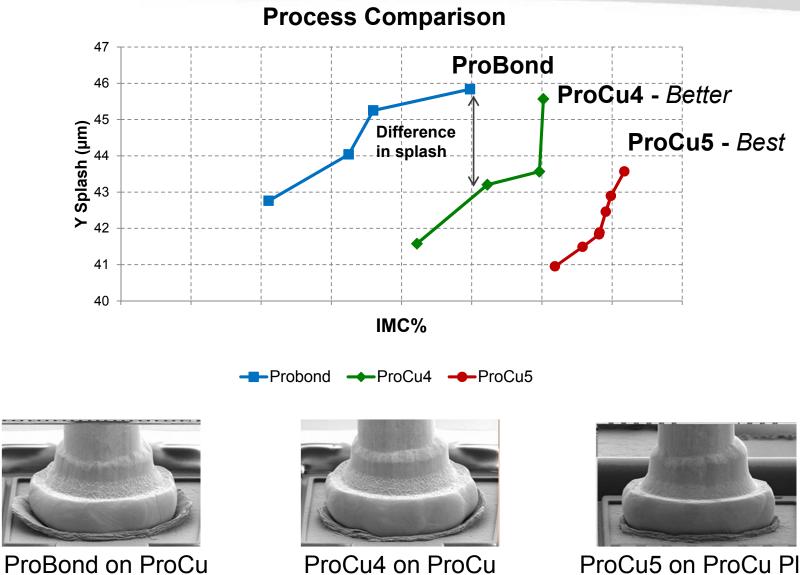
as easy and as robust as Au

Classical Process Parameters To ProCu Response Based Parameters


Resolving Pad Crack For Cu Wire Bonding

										/	
Process	Ball Dia (um)	Contact Dia	Splash	X (um)	Splash	Y (um)	Ball Hoight	IMC	2%	Pad	
FICESS		(um)	(um)	(um)	Avg	Max	Avg	Max	Height (um)	Avg	Min
Traditional Process on ProCu BSA=85	52.1	41.2	55.0	57.2	62.0	64.5	11.1	93%	90%	27%	
Traditional Process on ProCu Plus BSA=85	51.9	42.1	54.1	56.0	61.1	62.3	10.9	93%	91%	9%	
ProCu5 on ProCu Plus BSA 85	53.2	46.3	57.5	59.1	54.7	56.8	10.1	93%	89%	0	
ProCu5 on ProCu Plus BSA 105	53.0	45.8	57.4	59.5	57.6	58.5	10.3	94%	90%	0	

Traditional Process on ProCu


Traditional Process On ProCu Plus

ProCu5 on ProCu Plus

Improving AI Splash and IMC

ProCu5 on ProCu Plus

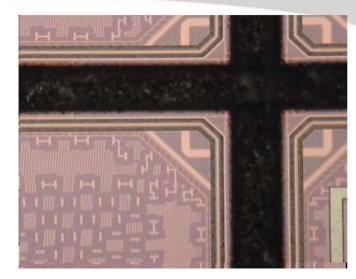
Fine Pitch Advances – 40um Pitch Process

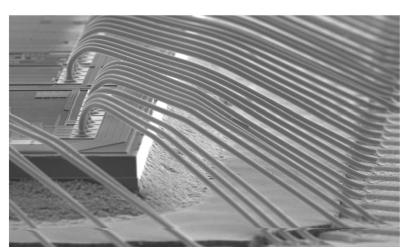
- 15um wire/40um pitch process is tested as part of our latest equipment verification test. Portable results are achieved across all machines meeting all wire bonding specifications.
- We are fully capable to support 28nm and 20nm wire bonding in high volume production.

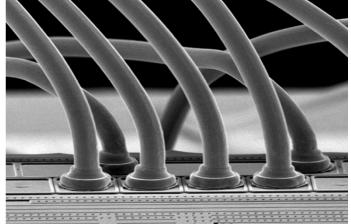
	Shear/	Ball	Ball		ę	Splash (µm)		IMC	(%)	C	age Pull (g	r)
MC #	Area (gr/mil ²)	Dia (um)	Height (um)	X Avg	X Max	Y Avg	Y Max	XY Avg	Avg	Min	Avg	Min	Lift Peel
Spec	>7	27 ± 1.5	7.5 ± 1.5		<34um		<34um		>85%	>80%		>2.5	0%
MC42331	8.7	27.2	6.8	31.2	32.3	30.1	31.6	30.6	92%	88%	5.4	5.1	0%
MC43231	9.3	27.7	7.0	33.1	33.9	31.7	33.2	32.4	90%	86%	4.7	4.1	0%
MC42440	8.0	28.0	8.3	32.2	33.9	30.4	33.0	31.3	90%	84%	5.0	4.6	0%
MC43294	7.9	27.4	7.4	32.6	33.8	30.8	32.1	31.7	94%	90%	4.8	4.5	0%
MC43047	8.6	27.3	7.0	32.7	33.9	31.9	33.5	32.3	90%	86%	4.7	4.3	0%
Avg	8.5	27.5	7.3	32.4	33.6	31.0	32.7	31.7	91%	87%	4.9	4.5	0.0
Min	7.9	27.2	6.8	31.2	32.3	30.1	31.6	30.6	90%	84%	4.7	4.1	0.0
Max	9.3	28.0	8.3	33.1	33.9	31.9	33.5	32.4	94%	90%	5.4	5.1	0.0

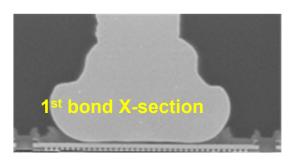
Reliability Study of Fine Pitch Cu Process

Cell	Wire Dia. [um]	Ball Dia. [um]	Y- Splash. [um]	Shear [g]	Cont. Dia. [um]	IMC [%]	Al remain [%]	HAST 96hr Failure	HAST 168hr Failure	HAST 96hr Failure	HAST 336hr Failure
10	15	29.6	34.8	11.1	24.1	96.2	51.8	8%	16%	0%	0%
11	15	31.5	36.3	12.8	26.9	94.6	52.9	8%	9%	0%	0%
12	15	33.8	38.1	14.1	28.5	93.6	53.6	0%	0%	0%	0%
13	18	37.1	41.2	16.5	30.7	95.0	51.8	0%	0%	0%	0%
14	18	38.9	41.7	17.3	33.0	91.2	53.6	0%	0%	0%	0%
15	18	40.8	44.1	19.2	35.9	91.6	49.1	0%	0%	Did no	ot test
T								Med Gra	ade EMC		Low CI + per EMCs


- Smaller bonded ball diameter negatively affects reliability outcome.
- Better molding compounds with low CI and Ion Trapper can easily pass 336 hour bias HAST reliability test for all cells.
- 30um bonded ball is targeted for 40um pitch application. This shows that reliable 40 um pitch Cu wire bond process is achievable.


Technology Innovation


28nm ELK Wafer Status



- Major foundries wafer qualified
- Multiple customer's device qualification pass
- Multiple customer's device already production
- MP Avg. yield performance 99.88% since May

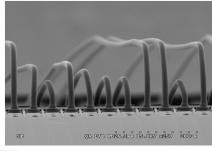
Source: ASE Confidential

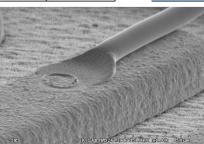
15um Cu Wire Development

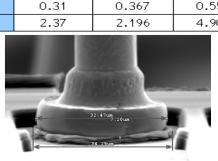
28nm ELK, 35um Bond Pad Opening

• Device information

- PKG: PBGA31X31X1.17
- Lead count: 899L
- Wafer technology: 28nm ELK
- BPP/ BPO: 40um / 35 um

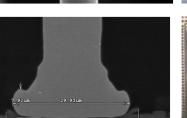

W/B material control

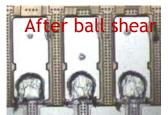

15um <u>Cu_Pd</u> Wire

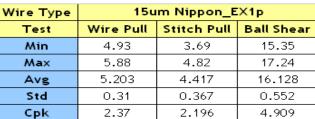

W/B Machine control

Machine – KNS wire bonder + Cu kit

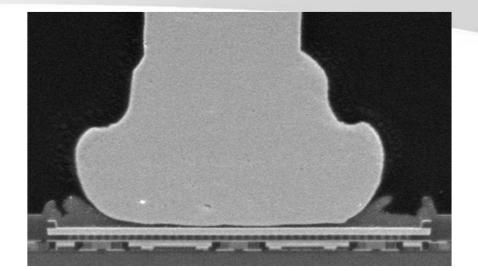
Wire Type	15um Nippon_EX1p								
Ball Size	Х	Y	Z	Al Splash					
Min	27.70	27.90	6.90	33.30					
Max	29.20	29.80	8.40	34.80					
Avg	28.39	28.81	7.60	34.06					
Std	0.52	0.60	0.50	0.57					

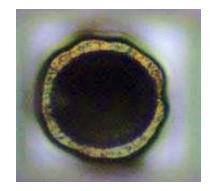


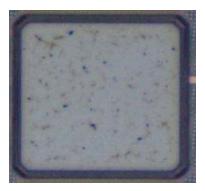




B WD45.5mm 15.0kV x1.5k 30um

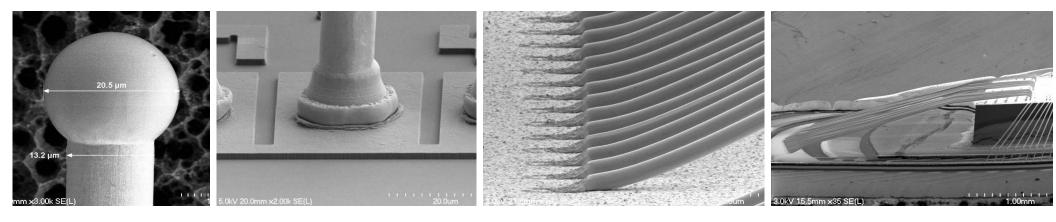





20nm ELK Wafer Development

Technology Innovation Solutions

- Device information
 - Package type : PBGA
 - Package size: 31 x 31mm
 - Lead count: 899L
 - Die size : 7.9 x 7.9mm
 - Bond pad pitch: 45um
 - Bond pad opening: 40um
 - Al layer thickness: 1.4um
 - Pad structure : DS
- W/B control
 - Machine : K&S ProCu Bonder
 - Wire diameter: 18um Cu coating wire
- Status
 - Under Reliability test

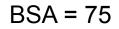


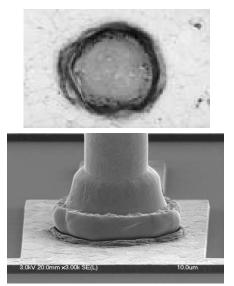
Source: ASE

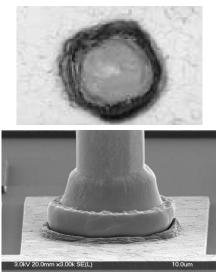
Cu Wire Fine Pitch Capability 13µm wire /

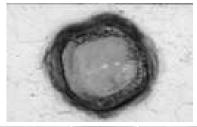
	Ball Dia (um)	Ball Height (um)	Shear (g)	X Splash (µm)	Y Splash (µm)	IMC (%)	Contact Dia (µm)	1st bond Pull (g)	2nd Bond Pull (g)
Average	24.1	6.1	6.9	27.8	28.7	96%	19.9	3.8	2.7
Stdev	0.26	0.26	0.34	0.90	0.70	2%	0.30	0.25	0.22
Max	24.6	7.0	7.4	29.5	29.8	98%	20.3	4.2	3.0
Min	23.6	5.5	6.3	25.9	27.6	91%	19.4	3.1	2.3
Range	1.0	1.5	1.1	3.6	2.2	7%	0.9	1.1	0.7

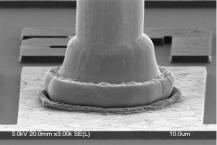
Achieved Good Free Air Ball, 1st bond, 2nd bond and Looping performance

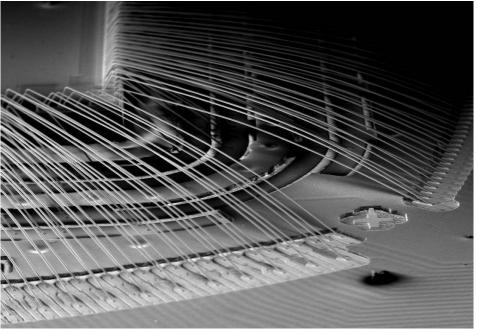

Cu Wire Fine Pitch Process Window




BSA (USG)	Ball Dia (um)	Ball Height (um)		X Splash Avg (um)				IMC Min (%)	Contact Dia (um)		Pull Min (g)	Lift	Peels
65	24.3	6.2	6.3	27.8	27.7	29.0	90%	89%	20.0	3.8	3.4	0%	0%
70	24.1	6.1	6.9	28.3	28.7	29.8	92%	91%	19.9	3.8	3.1	0%	0%
75	24.3	6.0	7.2	28.6	29.2	30.0	96%	96%	19.9	3.8	3.2	0%	0%

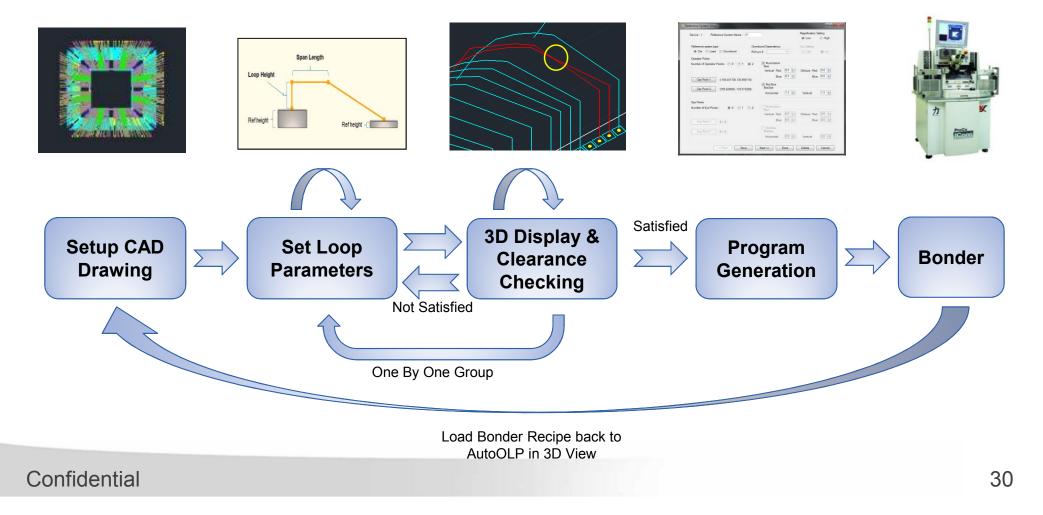

BSA = 65





Copper Wire Bond Looping Challenges

- PdCu wire is stronger than Au, it has better looping capability for fine pitch, multi-tier devices
- The Challenge is ... Complexity !
- Applications have increasing wire counts
- We provided new loop profiles & advanced trajectory control to achieve good results

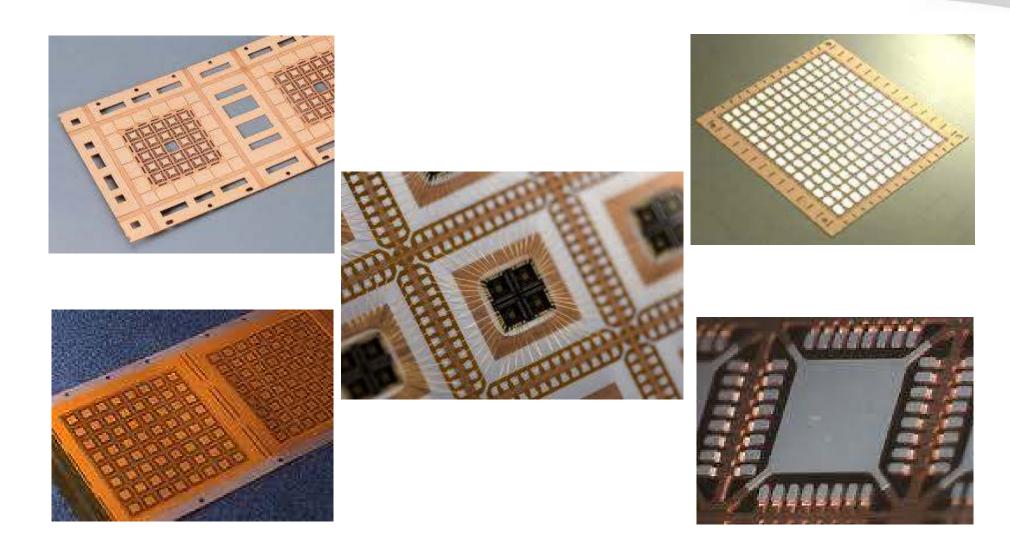

- Many wires with many loop profiles is a teaching and optimization challenge
- We are working to make this task easier

Advanced node Application: > 500 wires 0.6 – 0.8 mil PdCu wire Up to 8 layers of loops wire length up to 200 mils loop heights up to 400um

K&S AutoOLP

- AutoOLP™ is a system which convert device drawings into wire bonding program (recipes) in minimal time.
- We are adding new capability of 3D loop clearance check.

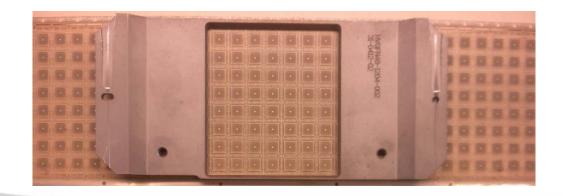
QFN (Quad-Flat pack No-Lead)- the fastest growing wire bond package

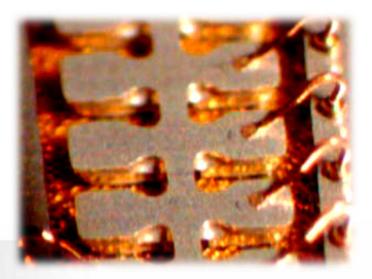


(Bn Units)	2011	2012	2013	20 18	CAAG R 2013 - 2018
DIP/SOT	4.3	4.1	4	3.4	-32%
SO/TSOP/SOT	78.5	76.8	81.3	90	2.1%
QFPALCC	18.3	17.5	17	15	-25%
QFN	20.5	19.8	27	56	(16%)
Wire Bond CSP	8.1	7.4	8.4	10.7	0.0%
Stacked CSP	6.7	6.9	8	11	6.6%
BOC for DRAM	13.5	12.5	11	7	-86%
Wire Bond BGA	1.1	1	0.9	0.8	-2.3%
COB (Wire Bond)	10.7	11.4	12	15.5	5.3%
Flip Chip CSP	1.3	2.3	3.0	7.4	20 %
Flip Chip CSP for DRAM (aka FC BOC)	0.2	0.7	1.4	6.0	32%
Flip Chip BGA/PGA/LGA	1.1	1.1	1.1	1.1	0.0%
DCA Flip Chip	5.5	5.5	5.7	6.5	2.7%
Wafer CSP (FC)	9	9.8	13	28.5	17 %
COG	4.6	4.9	5.4	7.6	7.1%
COF	3.3	3.2	32	3.5	1.8%
Subtotal Wire Bond	161.7	157.4	169.6	209.2	4.3%
Subtotal Flip Chip	25	27.5	32.8	60.6	13.1%
ICTOTAL	186.7	184.9	202.4	269.8	5.9%

Source : Prismark

QFN Device Samples





QFN Overview

- The benefits of QFN include low cost, reduced lead inductance, a small "near chip scale" footprint, thin profile and low weight.
- First bond processes are generally not an issue on QFNs
- Second bond can be difficult for several reasons ...
 - Effective leadfinger clamping is impossible for most QFN designs
 - Silicone adhesive backing tape provides no anchoring of leadfingers
 - QFN Lead-beams are highly prone to resonate under ultrasonic energy
 - New plating types (PPF, µPPF) and roughened surfaces are less bondable compared to traditional Ag plating

Advances in QFN 2nd Bond – ProStitch Plus Process

- Uses response based parameters
- Provide similarity in the look & feel of interface to ProCu.
- Stitch parameters initialized for processes based on material set information - wire diameter, cap geometry, etc.
- Fine adjustment parameters will optimize the process to account for difference in applications.

Unknown

Unknown

Done

<<< Page 1 (of 2)		
2 Scrub Cycle Boost	Stand	lard
3 Scrub Cycle Adjust	0	
4 Scrub Force Adjust	0	%
5 Scrub Amplitude Adjust	0	%
6 Scrub Phase	Circu	lar
7 Scrub Speed Adjust	0	%
8 Peel Reduction	0	%
9 SHTL Reduction	0	%
<<< Page 2 (of 2)	>>>	
2 Scrub USG	0	mAmps
3 Deform Adjust	0	%

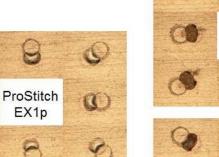
Lot Number

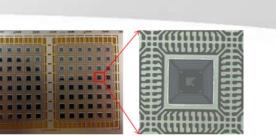
Misc Comment

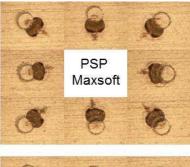
Technology nnovation

Process Improvement Example

0.8mil Bare Cu and AuPdCu Wire on PPF QFN


ProStitch process


- Maxsoft Bare Cu: 100% NSOL.
- EX1p AuPdCu: 0% Cu remain and low stitch strength.


ProStitch Plus process

Bare Cu and AuPdCu wire both have good results.

Process type	Traditiona	al Process	ProStitch Plus		
Wire type	Maxsoft	EX1p	Maxsoft	EX1p	
NSOL/SHTL	100%NSOL	ОК	ОК	ОК	
Peel		ОК	ОК	ОК	
Cu remain		Most 0%	100%	100%	
Stitch strength avg		4.11	5.60	5.96	
Stitch strength min		2.24	4.70	5.16	
Stitch strength std		1.04	0.39	0.45	
Cpk(lsl=2.5)		0.52	2.65	2.56	

PSP

EX1p

0

Conclusion

- Wire bonding has improved significantly over its technology life
- Advanced in Cu wire bonding pushed envelope for bonding advanced packages and also enables the packaging to be cheaper
- K&S will continue improving our wire bonding technology
 As well as working on other advanced packaging
 technology to support the future interconnect requirement

This PowerPoint presentation and all of its contents are protected under International and United States Copyright laws. Any reproduction or use of all or any part of this presentation without the express written consent of K&S is prohibited.