

Rack Level Passive (no datacenter fans) Water Cooling for Maximum Energy Efficiency

Shlomo Novotny

MEPTEC March2011

Commercial Computing and Network Telcom Power Density Trends

Source: S. Bechu, Vice President, i Series, "IBM eServers," IBM Power Technology, September 9, 2006; The Uptime Institute (USA).

OPEX Exceeds CAPEX in <2 Years

Annual Amortized Costs for a 1U Server in a Data Center

- ✓ Data Center facility costs are growing 20% vs. IT spend of 6%
- ✓ Opex over lifetime of a server growing to 4X original purchase cost

Typical Air Cooled Data Center

Power Dissipation Limit per Rack – 3-7KW

X86 racks (load per rack) 3-5 kW 15-20kW

Blade server 5-7 kW 20-25kW

Watts/SF 100-150 w/SF 500-750w+/SF

Rear Door Heat Exchanger How Does It Work?

- Rear Door Heat Exchanger (RDHx) replaces existing rear door of IT enclosure
- ▼ RDHx has chilled water Supply & Return quick connections at bottom OR top
- Chilled water circulates through tube+fin coil from Supply connection
- Equipment exhaust air passes through coil and is cooled <u>before</u> re-entering the room
- Heat is rejected from room through Return water connection

LiquiCool® System How Does It Work?

- RDHx provides 100% sensible cooling
 - ▼ No condensation, no need for reheat or humidification.
- Chilled water source city water, building chilled water, packaged chiller...

Optimized Neutral Zone

Can Fully Neutralize up to 25kW (ASHRAE max Recommended Guidelines)

Air Entering Rack: 32°C (90°F), 30%RH, 12.2°C (54°F) dew point Water Entering RDHx: 12.8°C (55°F) at 45 LPM (12 GPM)

Part # 109737 Rev A

Coolcentric

Rear Door Heat Exchanger Cooling Performance Model RDWBW – Wide Bottom Feed

Air Entering Rack: 32°C (90°F), 30%RH, 12.2°C (54°F) dew point Water Entering RDHx: 12.8°C (55°F) at 45 LPM (12 GPM)

Part # 109741 Rev A

Water Entering RDHx: 12.8°C (55°F) at 45 LPM (12 GPM)

Pressure Drop

RDHx vs. Perforated Door Test Results

Test setup

39 Nodes in (1) 600mm enclosure – IBM x3550 1U Servers
Each Node = 12x40mm fans in 3 banks of 4 fans each operating at flowrate of
35 cfm with 25C inlet air temperature. The standard rear door perforated
cover is 55 - 60% open.

Measured total rack power with perforated rear door cover: 15.51 kW(39 nodes installed)

Measured total rack power with rear door heat exchanger: 15.58 kW (+70 watt increase or 0.05%)

Measured average fan speed with perforated rear door cover: 8100 rpm Measured average fan speed with rear door heat exchanger: 8185 rpm(1.1 % increase)

Measured average delta temperature in inlet air temperature between 2 tests(Rear door heat exchanger - perforated rear door): 0.05 C Measured average delta temperature in processor temperature sensor between 2 tests(rear door heat exchanger - perforated rear door): 0.65 C

Chill Off

Presented at SVLG Data Center Energy Summit - June 26, 2008

Dean Nelson, Sr Director, Sun Microsystems
Tim Xu, Ph.D., PE, Lawrence Berkeley National Laboratory

(Plus Ken Schneebeli & Alan Claassen IBM and John Menoche, Vette Corp)

Results

https://microsite.accenture.com/svlgreport/Documents/pdf/case%20study_sun_modularv2.pdf

VETTE

Cost Effective Low Power Per Rack RDHx (4-6KW)

Free Cooling – New Build & Retrofit

Water-side Economizer Significant advantage over Air-side Economizers

- RDHx with water temperatures up to 70F
- RDHx paired with water-side economizer allows chiller free cooling up to 11 months/year
- Can reduce chiller plant energy up to 90%
- Scalable solution: Pay as you Grow
 - Day 1 Investment = fraction of legacy cost

- Compared to Air-side free cooling:
 - No sub-floor/overhead plenum
 - No particulate contamination
 - No noise
 - Air requires containment and limited to approximately 12kw per rack

Extreme Efficiency

Side Cooler – Front View 40KW @ 55F water; 20KW @ 65F water

Tata Center Efficiency Evolution

Power per Rack

PUE from 3.0+ to 1.2

High performance RDHx or side car RDHx

CRAC or alternating RDHx or alternating

Liquid and Hybrid RDHx

Traditional CRAC's could be eliminated in the new Basis of Design

All Water Cooling Data Center

Conclusion

- Infrastructure energy cost exceeding IT cost drives a focus on data center cooling efficiency
- Sizable energy savings can be found by re-thinking how data centers are cooled
- Traditional methods of spreading loads and adding space will no longer be cost effective
- Localized liquid cooling at rack-level and rack proximity minimizes energy consumption by eliminating air-cooling
- Makes cooling more predictable and allows optimized designs (no need to overcompensate as with air cooling), thus saving energy
- Water Cooling enables either running the chiller more efficiently by delivering "warmer" water or by eliminating the chiller and using an evaporative tower
- Localized liquid cooling is no longer simply a "hot-spot" solution, but the basis of design for new sustainable data-centers