

Contents

- 1. Target market
- 2. Performance of Loctite ABLESTIK SSP2020
- 3. New product development
 - Low porosity
 - Reduced stress
 - Power cycle performance
- 4. Conclusions

Power Electronics Material Development Focus

Technology Trends

- Increased Switching Speeds/ Frequency
- Higher Voltage
- Higher Operating Temperature
- Low Power Loss

Customer Needs

- High Reliability
- Low Stress Materials
- Ease of Processing
- Lead-Free / Halogen-Free

Henkel Solutions

	Pre-applied Phase Change Thermal Interface Material	Replace Thermal GreaseEasier to ProcessHigher Reliability
	High Temperature Molding Compound	 Replace Silicone Gel Casing and Fasteners Very High Reliability
	Silver Sintering Die Attach	 Replace Solder Paste Lead Free/Halogen Free High Reliability

Technical Approach

Ag Sintering formulation

Silver

- Particle size distribution
- Lubricant type/amount
- Tap density
- Surface area
- Loading (> 85% of formulation)

Additives

- Sintering aid or dispersing aid
- Decomposition temperature

Solvent

- Dispersion of Ag
- Evaporation rate/temperature
- Loading (as low as possible)

Industrial Application Process pressure sintering SSP2020

Process Flow					
Process	Paste Application	Paste Drying	Die Placement	Paste Sintering	
Equipment	Conventional printer	Conventional box oven	Pick & Place	Sinter Press	
Key Parameters	Stencil printing: 50-100µm Print speed: 20-100mm/s Squeegee pressure: 3-6 kg	Drying time: 20 min Drying temperature: 120°C Drying in air	Low pressure, short heating to set the die	Sinter pressure: 10MPa Sinter temperature: 250°C Sinter time: 2 min	

strong adhesion, dense sintered layer, proven thermal and electrical conductivity and proven reliability in power cycling

new equipment required, risk of die crack under high pressure

LOCTITE ABLESTIK SSP2020 DSC study

Product	LOCTITE ABLESTIK SSP2020: Henkel's commercial Ag sinter material
Test	Dynamic DSC (open Al flat pan) 25°C till 300°C, 10°C/min ramp, 50 ml/min air

Effect of Sinter Conditions on Adhesion Strength DSS

Effect of Sinter Conditions on Adhesion strength Bend Test

Effect of Sinter Pressure on Porosity

Product	LOCTITE ABLESTIK SSP2020		
Drying	40 min @ 120°C		
Sintering	260°C, 90s		
Measuring	FIB-SEM analysis		

< 12.2% porosity at 10 MPa sintering pressure < 6.5% porosity at 20 MPa sintering pressure < 5% porosity at 30 MPa sintering pressure

Contents

- 1. Target market
- 2. Performance of LOCTITE ABLESTIK SSP2020
- 3. New product development
 - Low porosity
 - Low Stress
 - Power cycle performance
- 4. Conclusions

Porosity after pressure assistent sintering

By selecting new silver fillers lower initial porosity numbers can be obtained

Passive thermal cycling -55/175°C

Sinter profile : 10 MPa, 5 min 300°C

5*5 mm² die on Ag-DBC

- Experimental material 1 contains new silver filler leading to lower porosity
- Experimental material 2 contains stress reducing raw materials

Initial100 cycle150 cycle250 cycle500 cycle750 cycleSSP 2020Image: SSP 2020EXP 1Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020EXP 1Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020EXP 2Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020EXP 2Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020EXP 2Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020EXP 2Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020EXP 2Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020EXP 2Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020EXP 2Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020EXP 2Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020EXP 2Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020Image: SSP 2020<tr<tr>Image: SSP 2020I

Stress reduction in the Ag sinter material enables thermal performance

Active power cycling Materials - assembly

Material	Ag DBC	Run	Number DUTs
SSP2020	20 MPa	1	6
Exp Henkel	20 MPa	1	6
Competitor 1	10 MPa	2	6
SSP2020	10 MPa	2	6
Exp Henkel	0 MPa	1	6
Competitor 2	20 MPa	2	6
solder		1+2	4

DUT = Device under test

Assembly:

-Die: 10x10mm IGBT3

-Substrate: DBC

-Materials and Processing

- Solder: SAC305, Vacuum oven/N2/Form
- SSP:
 - Pressure: Print > Dry > Die P/P > Pressure sintering (120s at 250°C)
 - Pressure less: Print > Die P/P > Oven sintering (1h at 250°C)
 - Wirebonding: 300µm Al-wire. 8 wires with loop and stich for each die.
 - Quality check before power cycling: SCAM and electrical (blocking voltage 400V)

Active power cycling Test parameters - goal

Per run, 20 DUTs are pressed on a cold plate with spring contacts, a thermally conductive foil is placed beneath each DUT

Test parameters:

- Coolant Temperature T_{min} = 40°C
- Load current 50A
- Targeted Temperature swing $\Delta T = 130 K$
- Heating voltage drop: 1.3 ~ 1.9V
- Cycling time ts = 30s (15s on /15s off) (500 hours for 60,000 cycles)

End_of_Life (EOF):

- 20% increase in V
- 20% increase in Rth
- 20% in Temp swing

Failure Mode: Wire Bond Lifting

Step increase of Voltage: indication of wire bond lifting

Silver Sinter vs Solder Paste

•No indication of material degradation

- No bondline structure change
- Stable thermal resistance

- Cause of failure for all DUTs: aluminium bond wire lift off
- Degradation of SAC solder observed (increase in R_{th})
- No degradation of sintered interconnections observed based on stable R_{th} value over full cycling range for all groups
- Follow up check: porosity in power cycle builds
- In order to look at full potential of sinter material bond and not have bond wires as lifetime limiting factor:
 - Sinter bond wires (good process not established)
 - Change wire bonds (AI/Cu clad, Cu wires: requires top side metallisation change of die)

Conclusions

- Henkel Ag sinter pastes have excellent adhesion performance (die shear strength, bending strength).
- Henkel Ag sinter pastes have good performance in active power cycling. Full realize of sintering mateiral properties need more robust wire bond solution.
- Current sinter pastes have improved performance over SAC solder which is used as a standard in power electronic module assembly.
- It is still not fully clear which paste properties are most important to lead to good active power cycle performance.
 - Certain minimum adhesion is needed to survive wire bond process
 - Low porosity will likely help to increase life time
- New Henkel developments are focused on lower sinter temperature and improved stress reduction to overcome failures due to CTE mismatches in the power module.

