Transforming Electronic Interconnect

Tim Olson – Founder & CTO
Deca Technologies
Smartphone Sales Have Overtaken PCs

Sources: Gartner, Statista & IDC

Changing Form

Shipments in millions

Smartphones

Desktop & Notebook PCs

Sources: Gartner, Statista & IDC
Electronic Interconnect
Different industries serving different levels

FOUNDRY

SATS

EMS

Device
(Chip Level)

Package
(1st Level)

System
(2nd Level)

SATS & EMS images courtesy of Prismark & Chipworks
Electronic Interconnect
Chip Level – The SoC (System on a Chip)
Electronic Interconnect
Chip Level – The SoC

IP Blocks
- MCU core(s)
- Power Mgmt
- Flash
- SRAM
- ADC, DAC
- NVM

Interfaces
- DRAM
- SRAM
- I²C
- SPI

RF Functions
- Tx, Rx
- BB

Deca Technologies
Electronic Interconnect …
Different industries, different dimensions

- Device: Nanometers
- Package: Microns
- System: Millimeters

Deca Technologies
Transforming Electronic Interconnect
... coming from different financial backgrounds

Capital Intensity
(Annual capex ÷ annual revenue)

- Leading Foundry
- SATS Providers (Top 4 average)
- Leading EMS

Gross Margin%

- Leading Foundry
- SATS Providers
- Leading EMS

Operating Income%

- Leading Foundry
- SATS Providers
- Leading EMS
... yet historical supply chain boundaries are blurring
... while costs remain quite different

<table>
<thead>
<tr>
<th>Chip Level Electronic Interconnect</th>
<th>Typical Geometries</th>
<th>Typical Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital processor</td>
<td>20 to 28nm</td>
<td>7 ¢ per mm2</td>
</tr>
<tr>
<td>Analog</td>
<td>55 to 130nm</td>
<td>3 ¢ per mm2</td>
</tr>
<tr>
<td>RF</td>
<td>65 to 180nm</td>
<td>2 ¢ per mm2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1st Level Electronic Interconnect</th>
<th>Typical Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flip chip CSP packaging</td>
<td>0.7 ¢ per mm2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2nd Level Electronic Interconnect</th>
<th>Typical Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 layer Smartphone motherboard</td>
<td>0.4 ¢ per mm2</td>
</tr>
</tbody>
</table>
What if ... the functional blocks of an SoC ... were disintegrated
... and re-integrated in a new way
... and re-integrated in a new way
... utilizing fan-out technology to connect functional blocks

... routing across mold compound to create a wafer level SoC
... defining the wafer level SoC

Wafer Level SoC: a group of individual semiconductor functional blocks arranged in close proximity within mold compound allowing wafer level electronic interconnect to extend beyond the bounds of silicon creating system on a chip functionality
Transforming Electronic Interconnect

Wafer Level SoC: a group of individual semiconductor functional blocks arranged in close proximity within mold compound allowing wafer level electronic interconnect to extend beyond the bounds of silicon creating system on a chip functionality... defining the wafer level SoC
... it all comes down to cost, can fan-out deliver?
... overcoming the greatest barrier, capital cost

Chip attach cost breakthrough

Die placement at high speed with a low cost of capital

Enabled by

Adaptive Patterning

Wafer fab cost breakthrough

Wafers fabricated on non-fab capital equipment

Inspired by

Solar wafer fab manufacturing

Deca Technologies

Transforming Electronic Interconnect
… with advanced lithography capability for wafer level SoCs

Fabricated in 300mm round or larger square panel formats

Planar surface enables lithography below 1µm feature size
... might fan-out technology reshape our future?

with the possibility to...

- Create wafer level SoCs with optimized functional blocks
- Slash SoC development time by an order of magnitude
- Cut product development cost by factors
- Enable ever higher levels of system integration
... in summary

We hold the power in our hands

... to transform electronic interconnect

... and create the wafer level SoC of tomorrow

Deca Technologies Transforming Electronic Interconnect
The author would like to express his appreciation to Lakshmi Bora & Suresh Jayaraman of Deca Technologies and Dr. Ali Keshavarzi of Cypress Semiconductor for their technical contributions.