Multi Die Integration – Can Material Suppliers Meet the Challenge?

Nov 14, 2012

Jeff Calvert - R&D Director, Advanced Packaging Technologies

Dow Electronic Materials
Outline

- Introduction
 - Market Trend
 - Materials Needs and Challenges

- Key Materials Solutions - Examples
 - Cu TSV Filling
 - Temporary Wafer Bonding Adhesive

- Summary
Drivers for Multi-Die Integration

- Flip-chip, wafer-level, and 2.5D/3D packages are the market drivers for advanced packaging.
- Key Drivers for 2.5D/3D Packaging:
 - Cost and complexity of scaling (“More Moore”)
 - Demand for Increased Performance and Functionality (“More than Moore”)
- 3D Packaging is a complex landscape of many different package architectures, integration approaches complexity in terms of diverse materials needs and insertion timing.

Global Wafer-Level-Packaging demand

Global Roadmap for 3D Integration with TSV
Dow Materials for the 3DIC and WLP Market

Front-end
Wafer fabrication materials

- Silicon / SOI wafer substrates
- FEOL / BEOL photo-resists
- Optical coatings
- Cleaning chemistries
- Etch chemistries
- CMP pad & slurries
- Gas precursors for CVD / ALD deposition
- Gas for RIE etch
- Sputtering targets
- Plating chemistries
- Color filters resists & pastes

... (Source SEMI 2011)

“Mid-end”
3DIC & WLP materials

- BEOL photo-resists
- Plating chemistries (ECD, Electro-less...)
- Sputtering targets (for PVD)
- Cleaning chemistries (strip, etch, etc…)
- CMP pad & slurries
- Gas precursors for CVD / ALD deposition
- Gas for DRIE etch
- Thick resists hard mask for DRIE
- Strippable thick resists & dry films for bumping / plating
- Dielectric passivation thick resists & dry films for RDL
- Carrier support wafers (Glass / Silicon / Metal)
- Capping and Spacer wafers (Glass / Silicon)
- Temporary bonding / de-bonding materials
- Wafer-level-molding compounds
- Wafer-level-undersfills
- Adhesive tapes (BG / Dicing)
- Solder spheres

Source YOLE Developpement

Back-end / Substrate
Packaging materials

- Bonding wires (Gold / Copper)
- Molding compound
- Die attach paste / tapes / films underfills
- Etch chemistries
- Cleaning chemistries
- Adhesion promoters
- Plating chemistries
- Thermal Interface material – TIM
- BT resin / epoxy / glass fiber for substrates PCB
- Leadframe structures
- Solder spheres & paste
- Lead metal cap

... (Source SEMI 2011)

Supplied by Dow Semiconductor Technologies

Supplied by Dow Advanced Packaging Technologies

Supplied by Dow Metalorganic Technologies
Key Material Challenges for 3D Packaging

- High AR Cu via filling, planarization
- Fine pitch bump metallization (solder, Cu pillar)
- Low stress/low cure temperature dielectrics
- Improved bond/de-bond adhesives
- New underfill technology
- Thermal management
Cu TSV Development Overview

INTERLINK™ 9200 Cu TSV Plating Bath was developed to address:
1) Void-free filling of 5-20\(\mu\)m diameter vias, AR 5-10
2) Defect-free, low overburden deposits

Cu TSV Plating Bath Development

- Chemistry Optimization: Gap filling, defects, OB, deposit morphology
- 300mm Process Development, Customer Demos
- Fab Testing, Qualification
- OEM POR
- R&D Formulation Development
- Customer Evaluation

TSV Array: 20x115\(\mu\)m.............to................6x65\(\mu\)m

➢ Chemistry is designed for enhanced filling of TSV features, targeting a wide range of via diameters and ARs

J. Calvert, MEPTEC Multi-Die Integration, 11/14/12
INTERLINK™ 9200 Cu TSV Plating Bath Components

- **Electrolyte:** Copper Sulfate/Sulfuric Acid based
 - IL9200 Electrolyte: 60 g/L Cu, 50 g/L Sulfuric Acid, 80 ppm Cl⁻

- **3-component Additive System**
 - Interlink 9200 Accelerator: Electrocatalyst for bottom-up filling
 - Interlink 9200 Suppressor: Suppresses deposition in field, along sidewalls
 - Interlink Leveler: Minimizes local “mounding” over feature arrays to enhance planarization

- **Interlink 9200 Pre-Wet Solution**
 - Optional vacuum/immersion process to expel air and wet seed layer If DI wafer pre-wet is not sufficient
TSV Cu Via Filling: 5 x 50\(\mu\)m Features

Partial Filling Sequence

- Strong polarization at feature opening and sidewall suppression leads to optimum gapfilling performance
- Excellent kinetics of fill at times of 15min or less

Gap Filling Speed Tests in Dow Membrane Cell

Test vehicles courtesy of Applied Materials
TSV Cu Via Filling: 10 x 100µm Features

Partial Filling Sequence

- 1.5kÅ Fill
- 3kÅ Fill
- 5kÅ Fill
- 7.5kÅ Fill

Gap Filling Speed Test in Dow Membrane Cell

- Excellent gap filling kinetics for 10x100µm vias
 - Strong bottom-up filling
 - Complete filling achieved with 38 min plating cycle

Test vehicles courtesy of Applied Materials
Overburden

Total Cu deposition = 1.5µm deposition
Measured overburden = 0.80µm

- Smooth, defect-free surface
- Low surface mounding over arrays
Cu TSVs Annealed at 400°C for 30 min

- Excellent morphology observed with large full-width Cu grains
- Void-free post anneal film ➔ high purity Cu deposit

Images used compliments of Applied Materials
Cu TSV Plating Bath Summary

- New product developed for Cu TSV Viafilling
- Excellent filling performance for interposer and via middle applications
- Fast filling times and low overburden ➔ lower CoO
- Void-free filling, low defects, high purity deposit ➔ high reliability/yield
- 300mm POR development underway at equipment vendors
Key Material Challenges for 3D Packaging

- High AR Cu via filling, planarization
- Fine pitch bump metallization (solder, Cu pillar)
- Low stress/low cure temperature dielectrics
- Improved bond/de-bond adhesives
- New underfill technology
- Thermal management
Key Features of XP-BCB Temporary Bonding Adhesive

- Based on BCB resin technology: Well-established in manufacturing as a permanent bonding adhesive material
 - High thermal stability, <1.0% wt loss/hr @ 300°C, T_g >400°C
 - Resistant to most chemical etchants, solvents and strippers
 - Excellent planarization over topography, low melt viscosity,
 - Void-free bonding, low temperature cure (200-230°C)
 - BCB platform known to be compatible with FBEOL processing, including backside grinding and plasma etching

- Added features of new product for temporary bonding application:
 - Single coatings → 50µm, Double coating → 100µm
 - Differential interfacial adhesion, tunable fracture energy
 - Clean, RT mechanical debonding from bumped die (Cu Pillar, C4 bump)
XP-BCB Temporary Bonding Adhesive Process Flow

Device Wafer with Solder Balls 760μm thick

Spin-on adhesive bonding layer XP-BCB

Bond Wafers

Thin and backside process device wafer

Room temperature mechanical lift off

Carrier Wafer

Spin-on adhesion promoter

Thinned Device Wafer 20-100μm thick
XP-BCB Two-Layer Coating Process Example

Coating Process

1st Coating
- Center Dispense
- Spin-On
- Soft-Bake 2 min @ 120°C

2nd Coating
- Center Dispense
- Spin-On
- Soft-Bake 2 min @ 120°C

Soft Cure
- Bake ~10 min @ 140°C

Blank Wafer
After soft-bake
- Thickness - 74.5 μm
- Std. Dev% - 1.03%

Bumped Wafer
- Target Thickness ~ 80 μm
- 1.4 um
- *4.5 mm scan

J. Calvert, MEPTEC Multi-Die Integration, 11/14/12
Bonding Process for XP-BCB

- Apply Adhesion Promoter onto carrier wafer, 90°C/90s
- Spincoat XP-BCB temporary bonding adhesive onto active die wafer, 120°C/120s

1. Heat active die wafer to melt temperature 80-150°C < 5 min
2. Evacuate chamber, < 1 mTorr
3. Contact carrier wafer to active die wafer
4. Bond wafers at 0N to 300N
5. After bonding, cure off-line 200°C/100min or 210°C/60min
 Void free bonded wafer pair imaged by CSAM of 300mm

 Bonded film is stable to 325°C/1hr (N₂ atmosphere)

 No void formation by CSAM

 Edge-on image of wafer pair

 No squeeze-out after bonding

 50mm (thin) 200mm wafer pair

 No edge chipping or delamination
Debonding occurs by insertion of a thin wedge at the temporary bonding adhesive layer, resulting in clean release from the active die surface with low applied force.
Blank Wafer Debonding Example

- XP-BCB separated cleanly from the “active die” wafer to the carrier wafer during “wedge-off” debonding process
- 300mm wafers (full thickness)
Debonding from SnAg Solder Bumped Die (Wafer Section)

Clean release from dense array of 90µm solder bumps
XP-BCB Temporary Bonding Adhesive Summary

- XP-BCB is a modified formulation, based on BCB.
- BCB is well-known to be an effective permanent bonding adhesive material.
- As a temporary bonding adhesive, XP-BCB has demonstrated:
 - Good coating uniformity, void-free bonding, high thermal stability
 - High resistance to chemical and plasma processing steps
 - Tunable fracture energy, differential interfacial adhesion
 - Withstands backgrinding to 50µm
 - Clean debonding from bumped wafers with no apparent residue
 - Initial coat/bond/debond feasibility demonstrated wafers using 300mm production toolsets
- Work is in progress to develop a POR using 300mm bumped wafers through backside integration.
Overall Summary

- 2.5D/3D is a complex landscape with many different materials requirements.
- Key areas with emerging materials needs include: via formation/filling, wafer thinning, wafer handling (bonding/debonding), assembly, redistribution, etc.
- Materials suppliers have successfully utilized existing material platforms to develop new products customized for these applications.
 - Examples: TSV Cu filling, Temporary Bonding Adhesive
- Continuous improvement needed to improve CoO
 - Increase yield, throughput
 - Reduce process complexity
Thank You