

Passionately Innovating With Customers To Create A Connected World

Multi Die Integration – Can Material Suppliers Meet the Challenge?

Nov 14, 2012 Jeff Calvert - R&D Director, Advanced Packaging Technologies Dow Electronic Materials

- Introduction
 - Market Trend
 - Materials Needs and Challenges
- Key Materials Solutions Examples
 - Cu TSV Filling
 - Temporary Wafer Bonding Adhesive
- Summary

Drivers for Multi-Die Integration

- Flip-chip, wafer-level, and 2.5D/3D packages are the market drivers for advanced packaging
- Key Drivers for 2.5D/3D Packaging:
 - Cost and complexity of scaling ("More Moore")
 - Demand for Increased Performance and Functionality ("More than Moore")
- 3D Packaging is a complex landscape of many different package architectures, integration approaches → complexity in terms of diverse materials needs and insertion timing

Dow Materials for the 3DIC and WLP Market

Key Material Challenges for 3D Packaging

- High AR Cu via filling, planarization
- Fine pitch bump metallization (solder, Cu pillar)
- Low stress/low cure temperature dielectrics
- Improved bond/de-bond adhesives
- New underfill technology
- Thermal management

Cu TSV Development Overview

INTERLINK[™] 9200 Cu TSV Plating Bath was developed to address:

1) Void-free filling of 5-20μm diameter vias, AR 5-10

2) Defect-free, low overburden deposits

Chemistry is designed for enhanced filling of TSV features, targeting a wide range of via diameters and ARs

INTERLINK™ 9200 Cu TSV Plating Bath Components

- Electrolyte: Copper Sulfate/Sulfuric Acid based
 - IL9200 Electrolyte: 60 g/L Cu, 50 g/L Sulfuric Acid, 80 ppm Cl⁻
- 3-component Additive System
 - Interlink 9200 Accelerator: Electrocatalyst for bottom-up filling
 - Interlink 9200 Suppressor: Suppresses deposition in field, along sidewalls
 - Interlink Leveler: Minimizes local "mounding" over feature arrays to enhance planarization
- Interlink 9200 Pre-Wet Solution
 - Optional vacuum/immersion process to expel air and wet seed layer If DI wafer pre-wet is not sufficient

TSV Cu Via Filling: 5 x 50 μ m Features

Partial Filling Sequence

Gap Filling Speed Tests in Dow Membrane Cell

Dow

Test vehicles courtesy of Applied Materials

- Strong polarization at feature opening and sidewall suppression leads to optimum gapfilling performance
- Excellent kinetics of fill at times of 15min or less

TSV Cu Via Filling: 10 x 100 μ m Features

Partial Filling Sequence

Gap Filling Speed Test in Dow Membrane Cell

Test vehicles courtesy of Applied Materials

- Excellent gap filling kinetics for 10x100µm vias
 - Strong bottom-up filling

DOW

- Complete filling achieved with 38 min plating cycle

Overburden

Total Cu deposition = $1.5\mu m$ deposition

Measured overburden = $0.80 \mu m$

- Smooth, defect -free surface
- Low surface mounding over arrays

Cu TSVs Annealed at 400°C for 30 min

5x50μm

Images used compliments of Applied Materials

- Excellent morphology observed with large full-width Cu grains
- Void-free post anneal film → high purity Cu deposit

10x100μm

Cu TSV Plating Bath Summary

- New product developed for Cu TSV Viafilling
- Excellent filling performance for interposer and via middle applications
- Fast filling times and low overburden → lower CoO
- Void-free filling, low defects, high purity deposit
 high reliability/yield
- 300mm POR development underway at equipment vendors

Key Material Challenges for 3D Packaging

- High AR Cu via filling, planarization
- Fine pitch bump metallization (solder, Cu pillar)
- Low stress/low cure temperature dielectrics
- Improved bond/de-bond adhesives
- New underfill technology
- Thermal management

Key Features of XP-BCB Temporary Bonding Adhesive

- Based on BCB resin technology: Well-established in manufacturing as a permanent bonding adhesive material
 - High thermal stability, <1.0% wt loss/hr @ 300°C, T_g >400°C
 - Resistant to most chemical etchants, solvents and strippers
 - Excellent planarization over topography, low melt viscosity,
 - Void-free bonding, low temperature cure (200-230°C)
 - BCB platform known to be compatible with FBEOL processing, including backside grinding and plasma etching
- Added features of new product for temporary bonding application:
 - Single coatings \rightarrow 50µm, Double coating \rightarrow 100µm
 - Differential interfacial adhesion, tunable fracture energy
 - Clean, RT mechanical debonding from bumped die (Cu Pillar, C4 bump)

XP-BCB Temporary Bonding Adhesive Process Flow **Device Wafer with Solder Balls Carrier Wafer** 760µm thick 00000000 Spin-on adhesive bonding layer Spin-on adhesion promoter **XP-BCB Bond Wafers** 00000000 Thin and backside process device wafer Room temperature mechanical lift off 0000000 Thinned Device Wafer

20-100µm thick

XP-BCB Two-Layer Coating Process Example

Coating Process **Center Dispense** Spin-On 1ST Coating Soft-Bake 2 min @ 120°C Center Dispense 2nd Spin-On Coating Soft-Bake 2 min @ 120°C Bake Soft Cure ~10 min @ 140°C Blank Wafer

After soft-bake

Thickness - 74.5 μm Std. Dev% - 1.03%

Bumped Wafer

Target Thickness ~ 80 um

Bonding Process for XP-BCB

- Apply Adhesion Promoter onto carrier wafer, 90°C/90s
- Spincoat XP-BCB temporary bonding adhesive onto active die wafer,120°C/120s

- Heat active die wafer to melt temperature 80-150°C < 5 min
- 2. Evacuate chamber, < 1 mTorr
- 3. Contact carrier wafer to active die wafer
- 4. Bond wafers at 0N to 300N
- 5. After bonding, cure off-line 200°C/100min or 210°C/60min

XP-BCB After Bonding and Thinning (Full Wafer)

- Void free bonded wafer pair imaged by CSAM of 300mm
- Bonded film is stable to 325°C/1hr (N₂ atmosphere)

No void formation by CSAM

50mm (thin) 200mm wafer pair

J. Calvert, MEPTEC Multi-Die Integration 1 edge chipping or delamination 8

Blank Wafer Debonding Example

- XP-BCB separated cleanly from the "active die" wafer to the carrier wafer during "wedge-off" debonding process
- 300mm wafers (full thickness)

Carrier Wafer

"Active Die" Wafer (full thickness)

Debonding from SnAg Solder Bumped Die (Wafer Section)

Clean release from dense array of 90µm solder bumps

XP-BCB Temporary Bonding Adhesive Summary

- XP-BCB is a modified formulation, based on BCB.
- BCB is well-known to be an effective <u>permanent</u> bonding adhesive material
- As a <u>temporary</u> bonding adhesive, XP-BCB has demonstrated:
 - Good coating uniformity, void-free bonding, high thermal stability
 - High resistance to chemical and plasma processing steps
 - Tunable fracture energy, differential interfacial adhesion
 - Withstands backgrinding to $50 \mu m$
 - Clean debonding from bumped wafers with no apparent residue
 - Initial coat/bond/debond feasibility demonstrated wafers using 300mm production toolsets
- Work is in progress to develop a POR using 300mm bumped wafers through backside integration

Overall Summary

- 2.5D/3D is a complex landscape with many different materials requirements
- Key areas with emerging materials needs include: via formation/filling, wafer thinning, wafer handling (bonding/debonding), assembly, redistribution, etc.
- Materials suppliers have successfully utilized existing material platforms to develop new products customized for these applications
 - Examples: TSV Cu filling, Temporary Bonding Adhesive
- Continuous improvement needed to improve CoO
 - Increase yield, throughput
 - Reduce process complexity

"® ™ Registered Trademark of The Dow Chemical Company."

Thank You