

Optimize Product Cost and Performance with System-level 3D Chip, Package, Board Co-design

October 23, 2014

Agenda

	99999
	99999
	0000-
	00000
0000	-0.0.0.0-
 Market Direction 	
• Challenges in Chip,	
Package, and Board design	
• • System-level Co-design	
• • Industry Initiatives	0000-
• • • • Case Study	
• Summary and Q&A	

Trends in Technology

Applications vs. IC Packaging

Advancement in cloud computing and "Big Data"

Growth in wearable devices

Expansion of "smart" application in automotive, healthcare, and other industries

Ongoing integration of smart devices

2014 - 2019

technology will require advancement in IC packaging technologies.

This includes substrate/silicon interposer design and 3D IC/TSV, and careful implementation of high-speed interfaces!

(Source: STATSChipPAC)

Market and Technology Challenges

Increasing Pressure of Known Requirements

Shorter design cycles Time to market

Design products as complete systems

Miniaturization

High-speed design

Reduce costs

Product differentiation

Global competition Design-anywheremanufacture-anywhere

4

Design Flow Challenges

Design Planning Methodologies Still Maturing

Planning assumption abstraction level:

Simplicity vs. accuracy

Non-engineering tools and lack of design reuse leads to an insufficient environment for design planning

Cobbled Together Flows from Planning and Co-Design Point Tools

File interchange formats are typically antiquated and deficient, proprietary, or not broadly supported

Common tools are developed based on past computer architectures, and require new feature bolt-on as workarounds

Flows Lack System-level Planning, Visualization, Design and Analysis

Planning data difficult to guarantee against final form

How to integrate different design databases for review and analysis?

Lack of integrated system-level environment to manage complete design process!

8

Zuken proprietary information, forwarding beyond the intended recipient(s) is not permitted.

3D Tools Needed for System-level 3D Problems

2D tools cannot highlight and visualize critical areas

3D structures require 3D design rules

IP Risk for Globalized but Competitive Supply Chain

 Time-to-market pressures require tighter collaboration with subcontracting and partner companies, resulting in IP being more at risk

System-level Co-design Methodology

System-level Co-design Paradigms

System-level Co-design Methodology

- Numerous methodologies and process around a co-design flow
 Design teams or companies may consider more than one approach
- Design teams can conduct co-design with the following general approach:

Chip/Package Co-design RDL/IO/bump/Interposer Optimization

- Conduct system-level co-design of chip and package to:
 - Optimize IO die bump placement and I/O ring synthesis helps package and RDL routability
 - Perform feasibility study and reuse for production design
 - Improve completion times with automatic routing for chip RDL and package escape routing
 - Complete simulation and analysis during the path finding/exploratory phase to improve performance
- The benefits:
 - Reducing RDL, interposer/substrate, package layer count
 - Ensuring signal and power performance
 - Improve time to tape-out

RDL Route (LSI side)

Escape Route (PKG side)

© Zuken

Chip/Package Co-design

Managing complex designs with TSVs

- Floorplanning of stacked chips with TSV and Si-Interposer needs to be considered
 - Generate TSV in Si-Interposer
 - RDL routing in Si-Interposer and chips
 - Generate power/ground mesh in Si-Interposer

Case Study: SoC/Wide IO Memory Design

<u>Deficiencies</u>

- > Long routes
- > Poor bump plan
- > Low density
- Poor BGA assignment

Case Study: SoC/Wide IO Memory Design

Design was optimized with adjustments to the parameters and bump placements using the co-design methodology. As a result, the RDL wiring length was shortened dramatically

Optimizations

- > Ball Assignment
- IO & Bump Assignment
- > Bump Pitch

<u>Result</u>

- > Min. Routing Length
- > Fewer Layers

Advanced Package Co-design

- System-level co-design enables intelligent PoP and SiP design
 - Seamless connection of package on package (PoP)
 - Focused design rule checks for SiP with real-time 3D view
 - Support for complicated bond wire placement of stacked LSI

H: IC1									• \$17	k
前—— 才內部品: []	C1								ダループや	1
ワイヤーポンド	基基提	グランドリング	パワーリング し	<i>「</i> ジスト	行也					
リファレンス	ビン番号	补水名	パッドスタック	行	プロファイル	マルチポンド	ポンドワイヤー表示	71-	ロック	1
ICI	40	V55		6	1		(V)	11	11	
IC1	13	VCC	Default	1	1		(V)		10	
IC1	39		Default		1		10	13	10	
IC1	38		Default		1		1	13	10	
IC1	37		Default		1		1	13	- 23	
IC1	12	VDD	Default	1	1			13	1	
IC1	36	VSS		G	1		V	8		
IC1	35		Default	***	1		1	13	13	
IC1	34	pwdata[7]	Default	2	1		N.	13	13	
IC1	33	pwdata[2]	Default	2	1		V	13	13	
IC1	32	pwdata[6]	Default	2	1		N.	83	83	
IC1	31	pwdata[1]	Default	2	1		2	13		
IC1	30	pwdata[4]	Default	2	1		V	12	10	
ICI	29	pwdata[5]	Default	2	1		2	B	0	
IC1	28	pwdata[3]	Default	2	1		1	15	10	
IC1	27	pwdata[0]	Default	2	1			1	1	

3D DRC for bond wires

© Zuken

Package/PCB co-design

- Conduct real-time IO swaps between package and board
 - Improve routability with automatic or interactive untangling of nets
 - Improve signal performance and power delivery
 - Eliminate exchange of CSV or other neutral files to communicate change

Hierarchical structure of package and board

22

PKG Design

System-level 3D SoC/SiP/PCB Co-design

- Native system-level 3D environment provides complete SoC/SiP/PCB view
- Support for OpenAccess enables design of RDL and Si-IP with IC-level design rules

System-level 3D SoC/SiP/PCB Co-design

- Supports state-of-the-art chip design with unique package technologies with multi-board integrated design
 - Optimize I/Os across the system in real-time
 - Conduct design trade-offs for various form factor or application
 - Consider board-level issues concurrently with the mixture of above technologies and SiP

© Zuken

© Zuken

Concurrent Simulation and Analysis

- · Consider multi-discipline, multi-physics analysis with
 - Integrated tools
 - Interface to best-in-class solutions

KEYSIGHT TECHNOLOGIES RF/high-speed	Solving SI/RF/EMC issues by using EMF analysis with various field solvers	
High-speed/RF/heat/structure	Linking with multi-physics solution covering a broad array of issues regarding signal integrity and mechanical designs	
RF/High-speed	Verification flow to maximize performance of designs with upfront analysis for SI/RF/MW issues	
CST High-speed/heat/structure	High speed 3D full wave modeling provides entire verification of the system, including PCB	
SYNOPSYS® High-speed	Delivers seamlessly linked environment for high-speed digital circuit analysis	

Zuken proprietary information, forwarding beyond the intended recipient(s) is not permitted.

Design for Manufacturing

- Verify your design to vendor technology-specific manufacturing checks for fabrication and assembly during layout
- Sign-off and comment on check results to ease communication and feedback
- Include proper documentation for manufacturing
 - Output results in required formats
 - Includes image of detected issue with approval status

Securing IP

 Important to manage and control sensitive data or IP when working globally or with partners

© Zuken

Electromechanical Co-Design

- 3D environment design to true mechanical constraints
- Identify critical placement issues early in the design process
- Conduct measurements and collision checks for optimal floorplanning

Case Study: System-level Co-design

- Challenges in form factor-driven design:
 - RF module placement
 - Physical specifications
 - Thermal dissipation
 - Form and fit
 - Product cost
 - Package technology

Almost all domains are modules

Case Study: System-level Co-design

Existing RF module has to be redesigned to meet new form factor requirements

Case Study: System-level Co-design

• Profile of chip is too thick to be embedded within module package

Module height 1.7mm⇒1.0mm

Case Study: System-level Co-design More Design Challenges

Zuken proprietary information, forwarding beyond the intended recipient(s) is not permitted.

Case Study: System-level Co-design Implementing design in 3D

- RF chip was easily embedded with updated stack-up rules
- Routing of dense system was simplified
- Conflict eliminated with sensitive analog area

Case Study: System-level Co-design Optimizing Signals in the System

- Routing at RDL layer in the RF chip was optimized against the module and PCB
- New RF module was verified to fit new form factor specification

Industry Initiatives

Industry Initiatives: STARC

To realize state of the art technology of design integrity with Co-design and Co-analysis

Multi-chip Co-design

Fore more info: http://www.starc.jp/about/profile-e/

Zuken proprietary information, forwarding beyond the intended recipient(s) is not permitted.

Industry Initiatives: JEITA and IEEE

- LPB Format
- Design environment to be constructed by 6 formats
- 1. Project Manage (M-Format)
- 2. Netlist (N-Format)
- 3. Component (C-Format)
- 4. Design Rule (R-Format)
- 5. Geometry (G-Format)
- 6. Glossary

Roadmap and Summary

Roadmap

- System-level constraint-driven design
 - Define system level physical and electrical constraints that adhered to during design
 - Reduce over-constraining across the system
- System-level analysis
 - Access to embedded any-physics simulation engine
 - Eliminate rework be meshing and modeling in your design tool
 - Simplification and usability of 1st pass analysis data
- Expand path-finding features and increase reuse for production design
 - Balance pre-design model abstraction with details required for implementable system
 - Enhance path finding capabilities and design partitioning support

Summary

- Eliminate manual data exchange between chip, package, and board with a unified co-design methodology
- Optimize routability via pin assignment and IO placement for minimum layers between chip, package and board during planning and implementation
- System-level co-design can help reduce cost and improve design performance with a holistic optimization approach
- Native 3D design platform with dedicate DRCs shortens design cycle times and improves design quality
- Tight collaboration with upfront analysis tools ensures highperformance and early detection of signal quality issues

The Partner for Success