MEPTEC Thermal Management Symposium, February, 2006

Thermal Challenges for SPARC Based Microprocessors

Bidyut Sen & Jim Jones Semiconductor Packaging Sun Microsystems

Make Money
Grow
Re-enlist Champions
Leverage Our Partners
Simplify Our Business

Agenda

- Thermal Roadmap
- Issues in Various Areas
- CMT
- Solution Space

Moore's Law

Microprocessor Thermal Dissipation Roadmap

Microprocessor Thermal Dissipation

Industry System Thermal Power Density

Processor Trends

Spending transistors on complex high frequency processors is showing diminishing returns....

Issues:

- Memory Latency
- Design Complexity
- High power & hot chips

Total Chip Dynamic and Static Power Dissipation Trends Based on the ITRS Michigan: Kim et al., 2003

Real End Use Condition - Ranch

Ranch Machine – CPU Temperature

ron.zhang@sun.com

and Leesa Noujeim

Courtesy of Kenny Gross & Kalyan Vaidyanathan

Temperature swing is ~ 9 degrees, including the low-frequency component.

Time [min]

Determine Equivalent ATC based on Used Condition

Assume

Solder Damage by Power Cycles = Solder Damage by ATC

$$(d_{\text{big cycle}} \times N_{\text{big cycle}} + d_{\text{mini cycle}} \times N_{\text{mini cycle}}) = d_{\text{ATC}} \times N_{\text{ATC}}$$

d – Damage per cycle

N - Number of cycles

CMT Processor Advantages

Addresses Bottlenecks - Memory, Power

- Simpler cores operate at lower frequencies while maintaining processor performance/throughput
- No extra transistors (and power) for multiple-issue or out-of-order execution
- Time-share a simpler pipeline
- Share under-utilized resources (crossbar switch): Memory and I/O controllers, Second-level caches
- Improved power efficiency & Die Yields
- Active power & temperature control by scheduling or idling threads & cores

CMT – Multiple Multithreaded Cores

Power

Processor Power Density Trends

CMT Decreases Power Density without Sacrificing Performance

CMT Processor Thermal Advantage

"Cool Threads"

- Cool improves performance, power & reliability
- Uniform peak power close to average power, improves thermal management, clock distribution & reliability

Fevruary, 2006 Page 13 bidyut.sen@sun.com

Cooling Hierarchy

- Package
- Board Level
 - TIM2
 - Heat Sink
 - Advacned Cooling Solutions
- Systems
- Facilities

Concept of "Thermal Resistance"

Solution Development Trends Thermal Budget Breakdown

Future Products

Selected DOE Solution Space

DOE Study Conclusions

- The DOE analysis reveals different contributions to the coolable power gains from the considered design variables
 - Within the package TIM1 effective thermal conductivity has the most impact, followed by lid conductivity
 - Outside the package the **cooling solution**, **Rsa**, has the most impact
 - TIM2 has a small impact up to k ≈ 10 W/mK; and even that only with highly efficient cooling solutions
 - Coolable power is largely independent of lid thickness for TIM2 k
 below ~10 W/mK. For TIM2 k above ~10 W/mK, increasing lid
 thickness could even be detrimental at CuW-like lid conductivity; this
 trend reverses at higher lid conductivity (like ScD)
- Improving TIM1/lid/TIM2 conductivity, alone with less efficient cooling solutions (Rsa ≈ 0.5 C/W), produces limited coolable power gains. To achieve the full potential, these changes must be made in conjunction with improvements in the cooling solution.

Thermal Solution Development - Rjc Improvements (Lid)

Lid Thickness & BTC* Impact on Coolable Power

Thermal Solution Development - Rjc Improvements (TIM1's)

Impact of TIM1 BLT on Rjc

TIM1 Effective BTC Impact on Coolable Power

Impact of TIM2 BTC* on Ric

Impact of TIM2 BTC* on Die Thermal Gradient

Cooling Solution Options

- BLT Improvements
 - > Thinner BLT
- Organic TIMs
 - > Higher effective TC
 - > Material investigation
- Inorganic TIM
 - > Materials Availble
 - > Process validation
- Advanced Lid Materials
 - > Issues with supply
 - > unproven reliability

Cooling Solution Options

- TEC
 - > Early stages of evaluation potential is uncertain
- Lidless
 - > Heat Spreading with Air Cooling
 - > Handling Issues
- Composite Die
 - > Thinner silicon with diamond-like layer
 - > Needs Development

Cooling Solution Options

Liquid Cooling

- > Direct and Indirect Attach
- > Liquid Cold Plate
- > System Level
- > Data Center Level
- Similar complexity to refrigeration with much shorter usable life and small performance gain over air

Refrigeration

- > Infrastructure
- > Reliability

Wattage

Microprocessor Power Projection

Thermal Solution Development - Rsa Improvements

Rsa reduction over time

Rsa Reduction as %

source: Guoping Xu

Chip, compressor, and total power

Data Center Cooling Options

FLOORPLAN

What is Junction-Case Thermal Resistance (R_{ic})?

 R_{jc} is an industry-wide accepted measure of package thermal performance

$$R_{jc} = \frac{(T_j - T_c)}{Q}$$

Thermal Resistance with Floorplan

- PkgA: 15 mm x 15 mm, 120 W: a bulk power density of 0.53 W/mm² as before
- PkgC: 10 mm x 10 mm, 25 W: a bulk power density of 0.25 W/mm², lower than that of PkgA

 PkgC resistance is 0.59 deg. C/W, higher than that of PkgA!

Summary

- Roadmap suggests continuation of increase of Chip Power unless a Silicon technology change happens
- Several Performance and Reliability Level Problems needs to be addressed
- Architecturally, Chip Multithreading (CMT) and Throughput Computing should help with Power mangement
- New Developments on Packaging and System Level Cooling is necessary