System Cooling of Outdoor Wi-Fi Antenna

Robert Raos, Solectron Corporation

MEPTEC Thermal Symposium February 16, 2005

Topics

- Requirements and Constraints
- Cooling Methods and Trade off Analysis
- System Cooling Simulation
- Thermal Testing Results and Comparison to Simulation

Requirements and Constraints

• Thermal Requirements:

- ✓ Max. Allowable Temp at **Inlet** of Electronics Compartment: 60 deg C
- ✓ Max. Allowable Temp in Electronics Compartment: 66 deg C
- ✓ Max. External Ambient Temp: 46 deg C
- ✓ Internally Generated Heat Load: 200 W distributed as follows:
- ✓ Solar Heat Loading: 753 W/sq. m, Evenly distributed on Front, One Side, and Top Surfaces (Total 3 Surfaces) ~ 200 W

• Other Constraints

- ✓ Maximum Weight Budget for Thermal Management Components: 12 lbs
- ✓ Maximum Cost for Thermal Management Components: \$120

Solar Radiation Heat Loading

	Area in ²	Area
		m ²
A1	1424	.917
A2	961	.062
A3	133.5	.086
Total	1653.5	1.067

Use Method-1 : GR-487-CORE Sec 3.25

Incident Solar Load

$$W_i = 753 \text{ W/m}^2 \text{ x } 1.067 \text{ m}^2 = 803 \text{ W}$$

 α = Absorptance of Surface

 $W\alpha = Absorbed Solar Load = W_i X \alpha$

For Painted white surface, $\alpha \approx .20$

 $W\alpha = 803 \text{ x} . 20 = 160 \text{ W}$

Cooling Methods Investigated

- Thermo-Electric Cooling
- Rankin Cycle A/C or Refrigeration Unit
- Phase-Change Materials (PCM) Heat Storage
- Air-to-Air Heat Exchanger

Thermo-Electric Cooling

- High Cost
- High Weight

AC / Refrigeration

Advantage KXRP47 AIR-TO-AIR PANEL-MOUNTED HEAT EXCHANGERS

Filter Recoating Adhesive

- Permanent Filters
- Heater Kit
- Other voltages and frequencies
- Special materials or finishes
- Special materials of ministes
 Special motors, line cords or conn

ILCHNICAL DAIA								
	UL/CUL			Maximum Allow			Performance	
	Listed or		Por	wer	Temperatu	ire °F/°C	Watts/°F (Watts/°C)	
Model	Recognized	Volts	Amps	Watts	Enclosure	Ambient	Air In	
KXRP47	Listed	115	3.60	386	160/71	131/55	54 (97)	
K2XRP47	Listed	230	1.66	384	160/71	131/55	54 (97)	
	Model KXRP47 K2XRP47	Model Recognized KXRP47 Listed K2XRP47 Listed	ULCUL ULCUL Listed or Recognized KXRP47 Listed 115 K2XRP47 Listed 230	Model Recognized Volts Amps KXRP47 Listed 115 3.60 K2XRP47 Listed 230 1.66	IDECHIVICAL DATA UL/CUL Listed or Power Model Recognized Volts Amps Watts KXRP47 Listed 115 3.60 386 K2XRP47 Listed 230 1.66 384	IDECHIVE CALL DATA UL/CUL Maximum. Listed or Power Temperate Model Recognized Volts Amps Watts Temperate KXRP47 Listed 115 3.60 386 160/71 K2XRP47 Listed 230 1.66 384 160/71	UL/CUL Power Maximum Allowable Listed or Recognized Volts Power Temperature °F/°C KXRP47 Listed 115 3.60 386 160/71 131/55 K2XRP47 Listed 230 1.66 384 160/71 131/55	

- High Cost
- High Weight

Phase-Change Materials (PCM) Heat Storage

Air-to-Air Heat Exchanger

- Internal fans provide air circulation over internal fins
- External fans ensure airflow of ambient air over external fins.
- Heat transfer is by a combination of convection to and from the fins to the air and conduction between internal and external fins
- The internal and ambient air do not mix

Cooling Methods *Selection Criteria, Ranking & Recommendation*

Criteria	TEC	A/C or Refrigerati	PCM	Air-to-Air Heat
Thermal Performance	***		**	*
Cost	*	**	* *	* * * *
Weight / Volume	*	*	**	* * * *
Reliability	***	**	****	***
Ease of assembly & field service	***	*	**	***

Air-to-Air Heat Exchanger Wins For This Application

Air-to-Air Heat Exchanger Air Flow Schematic

Simulation with Macroflow

Hacro	oFlow - [Edit Vie	Seal w	ed-Cabinet] Model Analyze Tools X Ba	Windo	ow Help												<u>.</u>	_ & ×
							16	18		.10	112		114		6			120
>	٩	0]													<u> </u>	, 10	<u> </u>	
B		-																
**	1	2																
ß	e Sa	-				Fan (x) dP(tota	2)): -4.0759e-00	11in H20										
	1	-		Gen	Node	T in: 66 M-dot: 1 Q: 14.7	.381C	n Node-2	Gen	Node-3	Gen Node-	2-2						
	-	4-		_	Link-5	T out: 6	6.381C	9	L	mk-5-	Link-6-7 Li	nk-12		/Exhaust-2				
	6	- 1			Link-4	<u> </u>	Į –	- 1. Z			···	-			_			
		_			Screen-	2		Resistan	ce 📃	Link-7-2	L							
					Link-3			T in: 66.37	1.3491 in H2O 1C	dP(total):	1.8899e-001ir	H2O						
		6			Y Area Ch	ange-2		M-dot: 1.4	515e-002kg/	T in: 46C	1970-000/////							
		-			Link-2	2 0044 0 0046	- 400	Q: 29.558 T out: 60.4	SPM 52C	Q: 22.37	5CFM							
	· · ·	-			T in: 60.42	27C	11120	Link-8		T out: 74	.157C							
~~~~	200	-		_	M-dot: 1.4	515e-002kg/s	s			Link-8-2					_			
للسمينا	ι u μ	_			Q: 29.067	CFM 084C												
-	- 100	8			A Area Ch	ange		Area Cha	nge-3									
	300					ange				🕌 Area Ch	ange-3-2							
		-			Screen			Vink 0										
	<b>A</b>	-		_	<u> </u>			Lilik-3		Link-9-2					_			
		_			Link-11 Bend-2													
<u>A</u>	Darma 1	10			&	Link-10		B		A								
$\neg$	BAAAAA							Bend	Inlet	 Æxhaust								
		11																
		-													_			
		-		_											_			
		-													_			
		13																
		-																
		-													_			
		_																-



#### **Summary of Results: Macroflow**

Location	T in deg C	T out deg C	Flow Rate CFM
<b>Electronics Compartment</b>	60	83	29
Internal Blowers	66	66	29
Heat Exchanger	66	60	29

Max Delta T to Ambient: 83 - 46 = 37 deg C at outlet of electronics area



#### **Flotherm CFD Model**





#### Air Vel @ Z=.7", External Heat Sink



SOLECTRON.

#### Air Vel @ Z=1", Internal Heat Sink



SOLECTRON.

#### Air Vel @ Z=3", Electronics Compartment





### Air Vel @ Z=3.7", Antenna/Fabric Gap





#### Air Vel @ X=20.5", Through Heat Sinks





#### Air Temp. @ Z=3.5"



**Isometric View** 



#### Air Temperature @ X=21.3"



**Vertical Section View** 



### Air Temperature @ Y=35"



Horizontal Section View



## Air Temp. @ X=35.7", CPU



Vertical Section View





#### Electronics Compartment Air Flow and Temperatures Summary



Total Bottom: 45.48cfm, Avg Temp 54 deg C



#### Max. Air Temperature Violation Summary

Maximum Allowable Air Temperature: 66 deg C

Max. Air Temp. deg C	Location	Mitigation Plan
72	Top of Radio PCB	Open Up Vent from 30% to 50 %
68	Top of PSU Module	Add an internal fan for PSU Exhaust
67	Right Corner of Right Antenna PCB	None (within margin of error)



#### **Electronics Compartment Predicted vs. Measured Temperatures Summary**



SOLECTRON.

### Air Temperature Simulation vs. Measurement Comparison

Location	Simulation Temp. deg C	Measured Temp deg C	Delta deg C	Error %
Inlet, Left 1	49	50	2	4
Inlet, Left 2	54	52	2	4
Inlet, Center	49	52	3	6
Top of Radio PCB	72	55	17	31
Top of CPU PCB	56	57	1	2
Top of PSU	68	64	4	6
Outlet, Left 1	49	56	7	13
Outlet, Left 2	51	60	9	15
Outlet, Center	58	55	3	5
Outlet, Right 1	63	60	3	5
Outlet, Right 2	60	61	1	2
Outlet, Right 3	67	61	6	10



### Conclusion

- High power dissipation sealed outdoor enclosures can be effectively cooled with low cost air-to-air heat exchangers.
- CFD simulation tools like Flotherm are very effective in predicting the internal air temperatures and in helping to optimize the thermal design for this type of application.

