Human Factors and Medical Devices: Overview

A Mamaghani
Topics

- Background Information
- What’s Human Factors Engineering?
- Why do it?
- How to apply HFE to Medical Device Design
- Q&A
Topics

- Background Information
- What’s Human Factors Engineering?
- Why do it?
- How to apply HFE to Medical Device Design
- Q&A
"To err is human"

- To minimize human errors is human factors
Medical Errors in US each Year
Result In:

- Up to 98,000 200,000 deaths
- 5th leading case of death: exceeds auto accidents, breast cancer and AIDS
- $29 Billion added cost
FDA Medical Device Incident Reports:

– 100,000 reports per year
– 44% of medical device recalls due to design problems.
– Use error often linked to design.
– Tip of iceberg.
Study of Medical Device Recalls (2011)

- 60 medical devices recalled between 2006 and 2011
 - 33 - poor electromechanical UI design (poor ergonomics, unverified alarms, potential for misconnections, etc)
 - 13 – poor GUI design
 - 8 – IFUs did not align well with device use or confusing
 - 5 – labeling not understandable or effective
Topics

- Background Information
- What’s Human Factors Engineering?
- Why do it?
- How to apply HFE to Medical Device Design
- Q&A
Human Factors

- “To understand use-related hazards, it is necessary to have an accurate and complete understanding of how a device will be used. Understanding and optimizing how people interact with technology is the subject of human factors engineering (HFE) and usability engineering (UE)…”

- FDA HF Guidance Document
Human-Device Interaction
HF Considerations

Use Environment
- Light, Noise
- Distraction
- Motion/Vibration
- Workload

User
- Knowledge
- Abilities
- Expectations
- Limitations

Device
- Operational requirements, procedures
- Device complexity
- Specific user interface characteristics

Outcome
- Safe & effective
- Unsafe or ineffective (Use Error)
Topics

- Background Information
- What’s Human Factors Engineering?
- Why do it?
- How to apply HFE to Medical Device Design
- Q&A
Regulations

- **Quality System regulation** 21 CFR 820.30, Design Controls

- The need for human factors is implied:
 - **Design input** – includes “needs of the user and patient”
 - **Design verification** – performance criteria met
 - **Design validation** – “… devices conform to **defined user needs and intended uses** and shall include **testing of production units under actual or simulated use conditions**. Design validation shall include **software validation** and **risk analysis**.”
Draft Guidance for Industry and Food and Drug Administration Staff

Applying Human Factors and Usability Engineering to Optimize Medical Device Design

DRAFT GUIDANCE
This guidance document is being distributed for comment purposes only. Document issued on: June 22, 2011

You should submit comments and suggestions regarding this draft document within 90 days of publication in the Federal Register of the notice announcing the availability of the draft guidance. Submit written comments to the Division of Dockets Management (HFA-305), Food and Drug Administration, 5630 Fishers Lane, rm. 1061, Rockville, MD 20852. Submit electronic comments to http://www.regulations.gov. Identify all comments with the docket number listed in the notice of availability that publishes in the Federal Register.

For questions regarding this document, contact Ron Kaye at ron.kaye@fda.hhs.gov or (301) 796-6269, or Molly Story at molly.story@fda.hhs.gov or (301) 796-1456.

When final, this document will supersede Medical Device Use-Safety: Incorporating Human Factors Engineering into Risk Management (Issued July 18, 2000).

U.S. Department of Health and Human Services
Food and Drug Administration
Center for Devices and Radiological Health
Office of Device Evaluation
Makes Good Business Sense

- Well designed devices have:
 - Fewer safety issues (risk of harm to the user/patient)
 - Fewer customer complaints (reduced repair cost)
 - Fewer recalls
 - Well received by customers
 - Sells itself (word of mouth)
 - Makes life easier for the users
 - Pleasure to work with
 - etc
 - All this translates to: $$$$$$
FDA’s Expectation for Pre-Market Submission

- Focus is on **safe** and **effective** device:
 - Identify and eliminate all potentials **use errors**
 - Device failure hazards
 - Use-related hazards
 - Address issues that cannot be designed out
 - Intuitive user interaction points (GUI, buttons, handles, etc)
 - Easy to understand system notifications and alarms
 - Easy to follow instructions
 - Ergonomic design
 - DOCUMENT YOUR WORK (usability studies, reviews, walkthroughs)
 - Include summary of HF Activities in Pre-Market submissions
- Less concerned about look and feel unless it affects safety
- Not at all concerned about marketability
Topics

- Background Information
- What’s Human Factors Engineering?
- Why do it?
- How to apply HFE to Medical Device Design
- Q&A
Human Factors activities throughout design

<table>
<thead>
<tr>
<th>Development Cycle</th>
<th>Concept and Feasibility</th>
<th>Design Input</th>
<th>Design Output</th>
<th>Verification</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Activities</td>
<td>Initial studies and concepts</td>
<td>Customer and product requirements</td>
<td>Design and build engineering units</td>
<td>Test output against design input</td>
<td>Test against users needs</td>
</tr>
<tr>
<td>HF Activities</td>
<td>• Market research</td>
<td>• Use environment</td>
<td>• Prototyping/simulation</td>
<td>• Cognitive walkthrough</td>
<td>Summative usability testing:</td>
</tr>
<tr>
<td></td>
<td>• Literature review</td>
<td>• User profiles</td>
<td>• Iterative design</td>
<td>• Expert Review</td>
<td>1. Using production units</td>
</tr>
<tr>
<td></td>
<td>• Complaints</td>
<td>• Task analysis</td>
<td>• Formative tests</td>
<td>• Usability tests</td>
<td>2. Actual or simulated use environment</td>
</tr>
<tr>
<td></td>
<td>• Contextual Inquiries</td>
<td>• Risk analysis</td>
<td>• Risk Analysis</td>
<td>• Risk analysis</td>
<td>3. Formal protocols</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• HF Requirements</td>
<td></td>
<td></td>
<td>4. Summaries</td>
</tr>
</tbody>
</table>
Human Factors Process

- Human Factors Report
 “Documentation” of human factors efforts consistent with FDA Guidance and recognized HF Standards

FDA Guidance Process

1. Define intended use, users, environment
2. Identify use related hazards
3. Estimate & prioritize use error risk
4. Implement risk controls
5. Validate safety of use
6. Risk Acceptable?
 - Yes
 - New risks Introduced?
 - Yes
 - No
 - Document process
8. Monitor unanticipated risks in post market
Concept and Feasibility

- Understand
 - User Demographics
 - Use environment
 - Work habits and workflow
 - Knowledge
 - Stress level
 - Errors and mistakes
 - Consequences of errors
Concept and Feasibility

- Document Findings
 - Customer requirements
 - Human factors requirements
 - Detailed risk analysis
Development

- Develop Initial Concepts and Prototypes
 - Drawings
 - Storyboards
 - Rough prototypes
- Conduct expert reviews (stakeholders, internal users)
- Develop tasks and test with actual users
 - Initial (formative) usability testing
 - 5-10 participants
 - Test for
 - Common workflow
 - Potential errors
 - Daily tasks
 - Utilize actual users
 - Using internal users (company employees) may mislead you
Development

- Refine and Finalize Design
 - Fix issue and address failures
 - Address design aspects contributing to errors and mistakes
 - Address usability issues
 - Repeat usability tests if necessary

- Develop formal usability tests
 - Based on human factors requirements
 - Comprehensive workflow involving user interface
 - Formal acceptance criteria
HF - Validation

- Perform Validation
 - Use final design
 - Larger number of participants (15-25)
 - Run in actual of simulated use environment
 - Create a formal summary
 - Address/Explain all observations
 - Include in pre-Market submission