High Volume Assembly & Test Solutions To Meet The Rapidly Growing MEMS Market

Russell Shumway

Sr. Manager - MEMS & Sensor Products Office: 480-786-7849 Russell.Shumway@amkor.com

RELIABILITY

TRUST

Enabling a Microelectronic World[®]

MEMS & IC Package Comparison

MEMS Package Relative Growth

 MEMS package market is now growing at an accelerated rate (~20% CAGR) of more than twice the overall IC package market (~9% CAGR), in unit shipments

Commonalities between MEMS & IC Packaging

- Driven by miniaturization
- Driven by cost reduction
- Driven by integration

Differences between MEMS & IC Packaging

- MEMS early adoption into high grade applications bred great diversity
- The rapid adoption and growth is in a very early stage without standardization

Growth and Diversity

• Explosive growth of MEMS Opportunities

- Enabled by creative application of known wafer fabrication techniques to create Si-based transducers
- Form factors are as diverse as the applications they serve

- Diversity in application and requirements is driving many unique packaging solutions through combinations of:
 - Design
 - Materials
 - Processing

MEMS Diversity of Assembly Materials

Substrate

- Low CTE thin core
- Pre-molded and in-frame cavity lead frame
- Cavity in laminate substrate
- Ceramic

Die attach

- Low stress epoxy
- Silicone gel
- Die Attach Film(DAF)

Die coat Encapsulation

- Silicone Gel
- Ероху
- Lid

Reliability Frust

- Flat or formed metal
- Molded plastic

Molding compound

Low stress EMC

MEMS Diversity of Assembly Processing

- Wafer Thinning
- Cavity protection
- Vacuum Chuck
- Wafer Expansion (Laser Stealth Dicing)

FC/WLP

- Solder Bump, Au stud, or Cu Pillar
- Wafer level RDL
- Silicon TSV

Die attach

- Low Stress
- Multi-Die (stack, flip, vertical mount, side-by-side)
- Precise placement control (positional, rotational, tilt)
- Transducer protection (vacuum damage)
- Die coat
 - Coverage
 - Selective dispense
 - Transducer protection

MEMS Diversity of Assembly Processing

Interconnect

- Ultrasonic wedge-bond
- Thermosonic ball-bond (Au or Cu)
- Micro Bump (TSV)
- FC (Thermo-compression, Reflow)

Lid attach of Cavity Packages

- Array or individual attach
 - Solder
 - Epoxy
 - Swage
 - Laser
 - Ultrasonic

Test

Reliability Frust

- Strip Test
- In-Situ Stimulus
 - Acoustical ports
 - Inertial Shakers with Axis Alignment
 - Magnetic Field
 - Pressure

MEMS Packaging Complexity

Many options and cost / performance considerations

Russell Shumway, AMKOR MEMS

MEMS Packaging at Amkor

- First 20+yrs: Broad range of packages & numerous new, complex applications
- Next 10 to 20yrs will there be more standardization? YES!

Standardization in MEMS Fab, Assembly & Test

- Early adoption bred diversity but rapid growth now creates a need for standardization to:
 - Increase cycle time-to-market for new applications & products
 - Support cost erosion

MEMS Wafer Fabrication

- Adopting standard processes to support MEMS
 - DRIE Etching, Wafer Bonding, TSV

MEMS Packaging

- Driving standard materials & strengthening supply base
- Integrating MEMS processes & handling into mature product lines
- Selecting Platforms that allow flexibility to support design variation
 - Cavities, Ports, Multi-die, Optical windows etc...

MEMS Test

RELIABILITY FRUST

- Multiple insertions & mechanical stimuli integration for combo sensors
- Strip based or Carrier based handling of various form factors for reuse & higher parallelism and lower total cost

Amkor MEMS & Sensor Packaging Evolution

20+yr Experience and Evolution in MEMS & Sensor Packaging

Broad range of point solutions

Russell Shumway, AMKOR MEMS

10

Focused platforms

10

echnology

MEMS Package Selection

• The package selection plays a critical role in

- The function and performance of sensor products
- controlling stresses to the MEMS structure
- ensuring stability over temperature and time through materials & design
- allowing the stimuli to reach the MEMS structure
- protecting the MEMS and ASIC devices

Primary Platforms

- Ceramic Assembly
- Laminate Chip Array LGA/BGA
- Leadframe MLF
- WLCSP

Important factors

- Flexibility in design to suit specific sensor type
- Scalability & flexibility for high volume is very important

Russell Shumway, AMKOR MEMS

Low cost laminate

- Low stress ceramic
- MLF-Cavity package structures
 - Cavity LF and flat lid

— or —

RELIABILITY FRUST

- In-frame molded with formed lid
- Over-molded versions of each are available for MEMS that are more immune from stress effects

CSP MEMS Packaging

- Two primary package platforms, CA and MLF, are allowing flexibility to accommodate several key MEMS applications
 - Pressure Sensors, Accelerometers, Microphones, Gyros

CA-Cavity package structures

Primary MEMS Platforms for Integration

- Highly flexible routing for SiP
 - or —

top port

hole

(option)

passive

component

(optional)

lid

(metal or plastic options)

Laminate Cavity MEMS Packages

- Assembled using standard CSP Strip Format, Technology and Infrastructure
 - Small Die handling
 - 2D Strip Mapping
 - Multi Die and Die Stacking
 - Substrate Supply Base
 - Scalability

RELIABILITY FRUST

- Matured lid attach capability / technology
- Universal approach to MEMS Packaging
 - Similar package structure can be applied for various MEMS application including Port Hole designs for environment stimulus

Laminate to Laminate Package – L2L

- Efficient assembly of Cavity packages by joining 2 strips together to create the cavity structure (flat bottom laminate with a cavity top laminate as lid)
- Routing is available on both sides of the package which enables a completely reversible design for SMT
- Maximizes the available Cavity Space

Reversible Package – Top Port♪

What is In-Frame MLF Package?

- Leadframe-based Chip Scale Package Platform
- Metal / Plastic Lidded package
- Lid opening options for optical

Russell Shumway, AMKOR MEMS

Pre-Molded Leadframe Cavity Package

- Pre-plated LF & Pre-molded Polymer Side wall
- Stacked or side by side die configuration
- Multiple lid options based on application (with or without ports)
- Lower cost alternative to ceramic cavity packaging for non hermetic application

Laminate Cavity MEMS Multi-Die Integration

- Integration opportunities through combinations of controller die plus Accelerometers, Gyros, Pressure Sensors, Microphones and Magnetometers.
 - Examples

RELIABILITY FRUST

- Gaming: Gyros + Accelerometers
- Smart Phones: Accelerometers + Gyros (or Magnetometer) + Pressure Sensor + Microphone
- Cable TV Remote Pointers: Accelerometers + Magnetometers
- CA Cavity MEMS Package platform allows flexibility to provide system in package configurations

17

17

5-12 MEMS

Enabling / Emerging Interconnect Technologies

- Current Interconnect Technologies:
 - Side-by-side
 - Stacking
 - Wire bond
 - Flip Chip
- 3D Package Technologies: non-MEMS today
 - Face-to-Face (F2F) Flip Stack
 - Through Silicon Via (TSV) Stacks
 - Amkor's Thru-Mold Via Technology (TMV[™])
 - Cu pillar FC

Reliability Frust

- ASIC as Capping Wafer

Enabling Material & Processing

- Application:
 - Pre-molded Cavity packages
 - Polymer Lids
 - Bio-compatible thermoplastics
 - Micro-channels or ports for fluidic transport
 - Plated polymer for interconnect or EMI shielding
- Advantage of Injection molding of thermoplastics
 - low cost precision 3D structures especially beneficial to micro-fluidics
 - low cost impact for molding simple to complex structures

Film Assisted Molding

- Applications:
 - Cavity Formation over LF, Laminate or Die Surface
 - Die surface exposure (humidity, temp, light sensors)
 - Wirebond protection (fingerprint sensors)
- Advantage of film assist molding technology
 - Can be applied to backend only of mature production line platforms so the rest of the line efficiencies can be realized

Russell Shumway, AMKOR MEMS

Summary

- There is a broad diversity of MEMS package requirements and form factors.
- Form factors will remain fairly broad due to several types of sensors & package function
- Accelerated MEMS market growth will drive standardization to offer performance and cost demands
- Standardization in package & test can be met by following a platform strategy that brings MEMS-specific materials, handling & processing to mature product lines to benefit from high volume cost & scale efficiency

Russell Shumway, AMKOR MEMS

Thank You

Russell Shumway, AMKOR MEMS