High Volume Assembly & Test Solutions To Meet The Rapidly Growing MEMS Market

Russell Shumway
Sr. Manager - MEMS & Sensor Products
Office: 480-786-7849
Russell.Shumway@amkor.com
MEMS & IC Package Comparison

• MEMS Package Relative Growth
 – MEMS package market is now growing at an accelerated rate (~20% CAGR) of more than twice the overall IC package market (~9% CAGR), in unit shipments

 ![Graph showing MEMS and IC package shipments from 2010 to 2016]

 [Yole Development, March 2012]

• Commonalities between MEMS & IC Packaging
 – Driven by miniaturization
 – Driven by cost reduction
 – Driven by integration

• Differences between MEMS & IC Packaging
 – MEMS early adoption into high grade applications bred great diversity
 – The rapid adoption and growth is in a very early stage without standardization
Growth and Diversity

• Explosive growth of MEMS Opportunities
 – Enabled by creative application of known wafer fabrication techniques to create Si-based transducers
 – Form factors are as diverse as the applications they serve

 – Diversity in application and requirements is driving many unique packaging solutions through combinations of:
 ▪ Design
 ▪ Materials
 ▪ Processing
MEMS Diversity of Assembly Materials

- **Substrate**
 - Low CTE thin core
 - Pre-molded and in-frame cavity lead frame
 - Cavity in laminate substrate
 - Ceramic

- **Die attach**
 - Low stress epoxy
 - Silicone gel
 - Die Attach Film (DAF)

- **Die coat Encapsulation**
 - Silicone Gel
 - Epoxy

- **Lid**
 - Flat or formed metal
 - Molded plastic

- **Molding compound**
 - Low stress EMC
MEMS Diversity of Assembly Processing

- **Wafer handling**
 - Wafer Thinning
 - Cavity protection
 - Vacuum Chuck
 - Wafer Expansion (Laser Stealth Dicing)

- **FC/WLP**
 - Solder Bump, Au stud, or Cu Pillar
 - Wafer level RDL
 - Silicon TSV

- **Die attach**
 - Low Stress
 - Multi-Die (stack, flip, vertical mount, side-by-side)
 - Precise placement control (positional, rotational, tilt)
 - Transducer protection (vacuum damage)

- **Die coat**
 - Coverage
 - Selective dispense
 - Transducer protection
MEMS Diversity of Assembly Processing

• **Interconnect**
 – Ultrasonic wedge-bond
 – Thermosonic ball-bond (Au or Cu)
 – Micro Bump (TSV)
 – FC (Thermo-compression, Reflow)

• **Lid attach of Cavity Packages**
 – Array or individual attach
 ▪ Solder
 ▪ Epoxy
 ▪ Swage
 ▪ Laser
 ▪ Ultrasonic

• **Test**
 – Strip Test
 – In-Situ Stimulus
 ▪ Acoustical ports
 ▪ Inertial Shakers with Axis Alignment
 ▪ Magnetic Field
 ▪ Pressure
MEMS Packaging Complexity

Many options and cost / performance considerations

Wire type, loop radius and gage?
Molded-in stress?
Leaded or not?
Green material?
Die attach method?
Stacked die or side-by-side?
Wirebond or flip-chip?
Cavity or overmold?
Laminate or leadframe?
EMI shielding?
Encapsulation?
How/what to test?
MEMS Packaging at Amkor

- First 20+yrs: Broad range of packages & numerous new, complex applications
- Next 10 to 20yrs – will there be more standardization? YES!

DLP courtesy of TI
Standardization in MEMS Fab, Assembly & Test

• Early adoption bred diversity but rapid growth now creates a need for standardization to:
 – Increase cycle time-to-market for new applications & products
 – Support cost erosion

• MEMS Wafer Fabrication
 – Adopting standard processes to support MEMS
 ▪ DRIE Etching, Wafer Bonding, TSV

• MEMS Packaging
 – Driving standard materials & strengthening supply base
 – Integrating MEMS processes & handling into mature product lines
 – Selecting Platforms that allow flexibility to support design variation
 ▪ Cavities, Ports, Multi-die, Optical windows etc…

• MEMS Test
 – Multiple insertions & mechanical stimuli integration for combo sensors
 – Strip based or Carrier based handling of various form factors for reuse & higher parallelism and lower total cost
Amkor MEMS & Sensor Packaging Evolution

20+yr Experience and Evolution in MEMS & Sensor Packaging

Transition from Custom Packaging to High Volume Manufacturing

Broad range of point solutions

Focused platforms

MLF® -Cavity (in-line or FAM)
ChipArray® -Cavity
LF-Cavity (pre-mold or FAM)
MLF® -Molded
ChipArray® -Molded
WLCSP

DLP® courtesy of TI
MEMS Package Selection

- **The package selection plays a critical role in**
 - The function and performance of sensor products
 - controlling stresses to the MEMS structure
 - ensuring stability over temperature and time through materials & design
 - allowing the stimuli to reach the MEMS structure
 - protecting the MEMS and ASIC devices

- **Primary Platforms**
 - Ceramic Assembly
 - Laminate Chip Array LGA/BGA
 - Leadframe MLF
 - WLCSP

- **Important factors**
 - Flexibility in design to suit specific sensor type
 - Scalability & flexibility for high volume is very important
CSP MEMS Packaging

Primary MEMS Platforms for Integration

- Two primary package platforms, CA and MLF, are allowing flexibility to accommodate several key MEMS applications
 - Pressure Sensors, Accelerometers, Microphones, Gyros

- CA-Cavity package structures
 - Highly flexible routing for SiP
 - Low cost laminate
 - Low stress ceramic

- MLF-Cavity package structures
 - Cavity LF and flat lid
 - In-frame molded with formed lid

- Over-molded versions of each are available for MEMS that are more immune from stress effects
Laminate Cavity MEMS Packages

- Assembled using standard CSP Strip Format, Technology and Infrastructure
 - Small Die handling
 - 2D Strip Mapping
 - Multi Die and Die Stacking
 - Substrate Supply Base
 - Scalability

- Matured lid attach capability / technology

- Universal approach to MEMS Packaging
 - Similar package structure can be applied for various MEMS application including Port Hole designs for environment stimulus
Laminate to Laminate Package – L2L

- Efficient assembly of Cavity packages by joining 2 strips together to create the cavity structure (flat bottom laminate with a cavity top laminate as lid)
- Routing is available on both sides of the package which enables a completely reversible design for SMT
- Maximizes the available Cavity Space
What is In-Frame MLF Package?

- Leadframe-based Chip Scale Package Platform
- Metal / Plastic Lidded package
- Lid opening options for optical
Pre-Molded Leadframe Cavity Package

- Pre-plated LF & Pre-molded Polymer Side wall
- Stacked or side by side die configuration
- Multiple lid options based on application (with or without ports)
- Lower cost alternative to ceramic cavity packaging for non-hermetic application
Laminate Cavity MEMS Multi-Die Integration

• Integration opportunities through combinations of controller die plus Accelerometers, Gyros, Pressure Sensors, Microphones and Magnetometers.
 – Examples
 ▪ Gaming: Gyros + Accelerometers
 ▪ Smart Phones: Accelerometers + Gyros (or Magnetometer) + Pressure Sensor + Microphone
 ▪ Cable TV Remote Pointers: Accelerometers + Magnetometers

• CA Cavity MEMS Package platform allows flexibility to provide system in package configurations
Enabling / Emerging Interconnect Technologies

• Current Interconnect Technologies:
 – Side-by-side
 – Stacking
 – Wire bond
 – Flip Chip

• 3D Package Technologies: non-MEMS today
 – Face-to-Face (F2F) Flip Stack
 – Through Silicon Via (TSV) Stacks
 – Amkor’s Thru-Mold Via Technology (TMV™)
 – Cu pillar FC
 – ASIC as Capping Wafer
Enabling Material & Processing

Use of Polymers:
• Application:
 • Pre-molded Cavity packages
 • Polymer Lids
 • Bio-compatible thermoplastics
 • Micro-channels or ports for fluidic transport
 • Plated polymer for interconnect or EMI shielding
• Advantage of Injection molding of thermoplastics
 • low cost precision 3D structures especially beneficial to micro-fluidics
 • low cost impact for molding simple to complex structures

Film Assisted Molding
• Applications:
 • Cavity Formation over LF, Laminate or Die Surface
 • Die surface exposure (humidity, temp, light sensors)
 • Wirebond protection (fingerprint sensors)
• Advantage of film assist molding technology
 • Can be applied to backend only of mature production line platforms so the rest of the line efficiencies can be realized
Summary

• There is a broad diversity of MEMS package requirements and form factors.

• Form factors will remain fairly broad due to several types of sensors & package function

• Accelerated MEMS market growth will drive standardization to offer performance and cost demands

• Standardization in package & test can be met by following a platform strategy that brings MEMS-specific materials, handling & processing to mature product lines to benefit from high volume cost & scale efficiency
Thank You