

Realizing the Full Potential of MEMS Design Automation

Steve Breit, Ph.D., V.P. Engineering

MEPTEC MEMS Symposium 2012

Consumer

Coventor Overview

Founded in 1996 with a focus on software for MEMS design and simulation

- Management team from MEMS and EDA
- Accelerate commercial MEMS success by reducing "Build and Test" cycles
- Offering software tools and expertise in design and simulation methodology

Solutions for MEMS product development

- Accelerometers, gyros, resonators, microphones, displays ...
- MEMS-specific multi-physics and MEMS+IC coupling

Outline

Coventor's Vision for MEMS Market Acceleration:

- 3 waves in the MEMS Market
- 3 waves in market differentiators

The Role of MEMS Design Automation in Accelerating Market Growth

- Complementary to A/MS flow
- Enabling MEMS design kits

3. Design & Integration Innovation

COVENTOR

The First Wave: Invention

COVENTOR

"One Product, One Process, One Package"

Jean-Christophe Eloy Yole Development

In one short phrase, an understanding of why the MEMS industry has been slow to develop

This "MEMS law" was true of the 1st wave, dominated by IDM's

- —\$100's Millions, if not Billions, invested developing processes, packaging and testing for seminal market successes
 - Automotive (Bosch, Analog, Freescale)
 - Inkjets (HP, Canon)
 - Projection (Texas Instruments)
- —Successes, but not readily scalable internally within IDMs or to a broader market

The Second Wave: Manufacturing Differentiation

COVENTOR

Started in 2006 with the Nintendo Wii, the first **consumer product success** for MEMS motion sensors

- -Larger volumes
- -Shorter product design cycles
- -More competition driven by lower cost

The Second Wave weakened the "One Product, One Process, ..." law

- To remain competitive, IDM's had to leverage their significant investments in processes and manufacturing: How can we re-use our process and manufacturing investment into new or derivative products?"
- Now, ADI, ST, Bosch, Freescale, etc.
 have processes and manufacturing capabilities that break the MEMS law

Market Pull

2nd wave market leaders differentiate on **proprietary processes**

This will end because...

- Mass market pull drove leading IDMs to outsource fabrication, spreading know-how to independent foundries
- 2nd-wave entrants (Knowles, Invensense, ...) leveraged growing MEMS eco system, spreading more MEMS know-how
- Large semi foundries want in on the action
 - -MEMS market growing faster than the semi market
 - -Lots of 200mm equipment to amortize still good for MEMS

The end of manufacturing differentiation is inevitable

- Large semi foundries will come up the curve, sooner or later
- Standard(ized) MEMS process modules will be available
- Volume manufacturing will drive down costs

COVENTOR

The Third Wave:

The Second Wave showed that the MEMS industry could grow at 15% year and could reach \$15 billion market size in a few years

Industry leaders say we are at the beginning of the Third Wave

- HP's vision for 1 trillion sensors by 2020:
 "Central Nervous System for the Earth"
- Bosch's vision for 7 trillion devices to serve 7 billion people in 2017
- Projected to dwarf the second wave

The Third-Wave, the trillion sensor vision, the \$300B - \$1Trillion vision, needs more than the first 2 waves

What will drive the transition to hyper growth?

MEMS Competencies Have to be Accessible and Scalable

The Third Wave: Design and Integration Innovation

Design Innovation =

- New applications
- Derivative designs
- Optimized designs
- New types of devices

Integration Innovation =

- New applications
- Multi-device systems
- MEMS + A/MS + RF + logic
- Wafer or Package level

MEMS technologies made *accessible* & *scalable* by the **MEMS Eco System**

MEMS Integration Challenges

© Coventor Inc. 2011

Slide 9

Denser Integration is Inevitable

COVENTOR

Denser integration driven by

- Higher performance
 - Improved SNR
 - More dynamic range
 - etc.
- Lower cost
- Smaller form factor
- Reduced power use

More Moore: Miniaturization

Derived from G.Q. Zhang, NXP

The Role of MEMS Design Automation

In the 2nd Wave:

The Role of MEMS Design Automation

Establish

In the 3rd Wave:

1. Simulate the complete system reliability and performance Volume production MEMS device behavior Test services and equipment vs. process variations Use Select back-end —MEMS+IC coupled system Pilot partner simulation production -Packaging effects to compress Select foundry development partner —Yield First cycle prototypes Use 2. Enable the MEMS ecosystem existing software (foundries \rightarrow IDMs, fabless) tools -Reference design flow, MFMS & FDA software 0 years —MEMS Design Kits (MDKs) Source: A.M. Fitzgerald

5 years

Goal: Simulate All Specs in a "Virtual" Product Data Sheet

MEMS Gyro Data Sheet

	PARAMETER	CONDITIONS			MIN	ТҮР	MAX	UNITS
	SENSITIVITY		-			5		
	Full-Scale Range	At X-OUT and Y-OUT	1			2000		°/s
		At X4.5OUT and Y4.5OU	г	Vield /	Cost	440		°/s
				neid y	COSt			
	Sensitivity	At X-OUT and Y-OUT				0.5		mV/°/s
		At X4.5OUT and Y4.5OU	т			2.27		mV/°/s
						_		
	Initial Calibration Tolerance	At X-OUT and Y-OUT						
	Calibration Drift Over Specified	At X-OUT and Y-OUT			Mos	st spec	s are e	lectrica
	Nonlinearity	At X-OUT and Y-OUT Be	st Fit Str	aight Line				
	(TorningBridy		ot n Ou	aight cine	requiri	ING IVIE	IVIS+IC	simula
М	any specs involve							
		Easters Set				1 35		v
K	backaging effects	Tablory Oct	Moth A	With Auto Zoro		+20		•
		Relative to VREF	With Auto Zero			120		mV
			Withou	it Auto Zero		±150		
	ZRO Drift Over Specified					\wedge		mV
	Temperature							
	Power Supply Sensitivity	@ 50 Hz		N	/lust kn	IOW		°/sec/V
	FREQUENCY RESPONSE	Internal LPF -90° proce		ess variations			Hz	
	High Frequency Cutoff							
	LPF Phase De							•
	MECHANICAL MEMS/IC	coupling						
	X-Axis Resona	matter			20	24	28	kHz
	Y-Axis Resona parasitic	matter		23	27	31	kHz	
	Frequency Sep					3		kHz
	NOISE PERFORMANCE							
	Total RMS Noise	Bandwidth 1Hz to 1kHz, A	At X-OUT	and Y-OUT		0.3		mV rms
	OUTDUT DDIVE CADADILITY	1			I	1	1	1

ADI ADXRS620

Analog / Mixed-Signal Reference Design Flow

Coventor's Vision for a MEMS+IC Reference Flow

Completing the Vision: MEMS Design Kits

What's in a MEMS Design Kit?

COVENTOR

MDK Contents

- High-level process description
 - Deposit thickness, conformality
 - -Etch depth, sidewall profiles
 - -Mask names
- MEMS-specific design rules —Release etch hole specs
- Material properties
 - -Process-specific
 - -Pre-stress, stress gradient
- Device IP
 - -Parametric device models

Example: DALSA CMOS-MEMS PDK

le	Eak	view Tools Wind	ows Help	mil i i i el		
	2		9 C 3	ë 3 3 🦻		
Jumbe	er	Step Name	Layer Name	Material Name	Thickness	Mask Name
- 0		Substrate	Substrate	SILICON	40	
-1		Generic Dry Etch				CAVITY
-2		Stack Material	ActiveAreaOxide	ActiveAreaThermalOxide	0.4	
- 3)	Conformal Shell	Contacts_SG	SG	0.1	
- 4		Conformal Shell	Contacts_PSG	PSG	0.4	
- 5		Generic Dry Etch				CONTACTS
÷-6		TOPMETAL1				
-						
	6.1 6.2 6.3	Sputtering Sput Sput	Meta1_Ti	Ti	0.01	
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	Sputtering Sput Sput Sput Gen Con Gen Gen	Meta1_Ti		0.01	
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	Sputtering Sput Sput Sput Gen Con Gen Gen 700	Meta1_Ti	Ti	0.01	
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	Sputtering Sput Sput Sput Gen Con Gen Gen Gen 700 700 700 700 700 700 700 700 700 70	Meta1_Ti		0.01	
789	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	Sputtering Sput Sput Sput Gen Con Gen Gen Tot Tot Tot Tot Tot	Metal_Ti		0.01	
78910	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	Sputtering Sput Sput Sput Gen Con Gen Gen Gen 700 700 700 700 700 700 700 700 700 70	Meta1_Ti		0.01	
€-78 -99 -111	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	Sputtering Sput Sput Sput Gen Con Gen Gen Gen Too Too Con Con Con Con Con Con Con Con Con C	Meta1_Ti		0.01	

Standardized process + reference flow + MDKs

• Reference flow for integrated MEMS+IC design

Conclusions

Wave 2 leaders rely on proprietary MEMS processes

Wave 3 leaders will rely on **Design & Integration Innovation**

-Think

Invention

Call to Action:

Collaboration among eco-system leaders to make MEMS competencies accessible & scalable

2.

COVENTOR