Thermal Interface Materials (TIMs) for IC Cooling

Percy Chinoy

ENGINEERING YOUR SUCCESS.

March 19, 2008

Outline

- Thermal Impedance
- Interfacial Contact Resistance
- Polymer TIM Product Platforms
- TIM Design
- TIM Trends
- Summary

Thermal Management

- Heat is a major problem in electronics equipment
 - Limits performance (e.g. operating speed)
 - Reduces reliability (e.g. product lifetime)
 - Reduces efficiency (e.g. battery life)
 - Adds cost to the product

- Thermal interface materials (TIMs) enable heat transfer from semiconductor device (die, package) to heat spreader (heat sink / heat pipe / chassis / housing)
 - Design goal is to minimize thermal impedance and keep the device junction temperature below specified limits (typically 90–100°C)

Thermal Pathway

Parker Chomerics

PARKER CONFIDENTIAL

Think beyond thermal conductivity.... Thermal Impedance

 $\theta_{TIM} = R_{contact 1} + R_{TIM} + R_{contact 2}$ $R_{TIM} = d/k$

- d bondline thickness (mm)
- k thermal conductivity (W/m-K)
- θ thermal impedance (°C-cm²/W)
- R thermal resistance (°C-cm²/W)

Measuring Thermal Impedance: ASTM D5470 Test Method

- ASTM D5470 is a convenient, standardized tool to measure and compare performance of TIMs
- Measured thermal impedance at a given pressure is determined by:
 - Bulk thermal conductivity, and
 - Bond line thickness (BLT), and
 - Contact resistance at the interfaces
- Limitations:
 - In-situ reliability measurements
 - Caution when comparing published test results from one tester to another, one lab to another ...
 - ... particularly for thin bond-line, very low impedance measurements
 - Caution when translating lab test results to real world applications

Interfacial Contact Resistance

- Contact resistance is primarily due to surface irregularities on a microscopic scale and out-of-flatness on a macroscopic scale, both of which cause air entrapment
- TIMs essentially replace air with a more thermally conductive material

 $k_{air} = 0.03 \text{ W/m-K}$ $k_{TIM} = 1-5 \text{ W/m-K}$ $k_{AI} = 225 \text{ W/m-K}$

• Require good surface wetting to aluminum, copper, plastic, silicon,

Interfacial Contact Resistance

- Decreasing silicon die thickness gives lower thermal impedance through the silicon but exacerbates die/package warping issues
- Watch out for flatness specs on low-cost heat sinks
- Softer TIMs conform better to surface irregularities and thus reduce R_{contact} (and also reduce stress on the components)
- Higher pressures reduce R_{contact} (and also reduce bond-line thickness)

Polymer Thermal Interface Materials

- Thermally conducting fillers dispersed in resin binders
- Formulations optimized for:
 - Thermals, e.g. impedance
 - Bond-line, e.g. thin / thick
 - Mechanicals, e.g. compression
 - Electricals, e.g. isolation
 - Application process, e.g. stencil, pick-and-place
 - Manufacturing process, e.g. mixing, coating, lamination

Polymer TIM Product Platforms

Thermal Grease

Thermal Gels

Gap Filler Pads

Phase Change

Electrically Insulating Pads

Compounds / Adhesives

PARKER CONFIDENTIAL

Thermal Tapes

Design Variables for TIMs

Thermal, Physical, Electrical, Mechanical, Regulatory

- Power dissipation Watts, Watts/cm²
- Allowable temperatures T_{junction}, T_{case}
- Size of chip, package
- Gap thickness between chip/package and heat spreader
 - Thin bond-line or thick bond-line TIMs
- Flatness tolerances (bow, warp, tilt) and co-planarity of chips/packages and heat spreader

Thermal

Impedance

specification

Design Variables for TIMs

- Contact pressure
 - Impacts bond-line thickness and contact resistance
- Electrical isolation requirement Volts/mm
- Attachment of heat spreader with mechanical fastener (screw, clip) or TIM – adhesion strength requirements
- Application process
- UL rating
- ROHS compliance
- Out-gassing requirements TML
- Re-workability
- Storage, shelf-life
- Others

TIM Applications

Applications TIMs	Micro Processor 10 - 100+ Watts	Graphics Processor 5 - 100+ Watts	Memory <15 Watts	ASICs <10 Watts (most)	Chipsets 5 - 20 Watts	Power Discretes 10 - 100+ Watts	Power Modules 10 - 100+ Watts
Gap-Fillers							
Phase-Change							•
Grease / Gel							•
Dispensable Compounds							•
Tapes							
Insulator Pads							

A579 Gap Filler Pad

......................

言言

Look beyond time=0 performance

Proven Reliability

Aging Time at Different Temperarures

PARKER CONFIDENTIAL

Microprocessor Power Trends

- Transistor density continues to double every 24 months
 - 65nm in 2005 \rightarrow 45nm in 2007 \rightarrow 32nm in 2009
- Clock frequency continues to increase (>3GHz) for highspeed performance, but
 - ... running into power consumption and heat dissipation limitations
- Thermal challenges dominate microprocessor design and architecture
 - Performance per Watt is key design parameter
- ITRS and iNEMI roadmaps show continuing increase in power for high-end microprocessors
 - >160W for servers/netcom, >100W for desktop, >40W for mobile
- Rapid migration of multi-core processors may slow the trend of increasing *average/max* power, but ...
 - Hot spots are a growing challenge, power density <u>> 200 Watts/cm²</u>

Thermal Impedance Trends (estimated from ITRS, iNEMI roadmaps)

 $\theta_{TIM} = 0.1 - 0.2 \text{ °C/W}$

PARKER CONFIDENTIAL

TIM Trends

- Low thermal impedance
 - High thermal conductivity
 - Thin bond line
 - Low contact resistance softness / compliance, surface wetting
- High reliability
 - End-of-Life performance TIM degradation over time
 - Cross-link density Gels
- Low cost
 - Total cost of ownership
- Adhesion strength
 - High adhesion strength for tapes, adhesives
 - Low adhesion strength on some surfaces for ease of rework
- Automated Application Process
 - Dispense, pick-and-place
- Custom Integrated Assemblies
 - Thermal + EMI shielding/RF absorbing solutions

Summary

- Thermal challenges dominate chip and package design
- Increased power density and reliability are driving innovation in TIMs
- Thermal impedance is the key metric of TIM performance, not just at time=0 but at end-of-life
- Decisions on TIM selection should not be based just on piece-part cost but rather total cost of ownership
- Collaboration of TIM manufacturers with designers at OEMs, ODMs, CEMs is essential to ensure steady stream of new TIMs that meet tomorrow's IC cooling needs

