Smart Dust and Sensory Swarms Kris Pister Prof. EECS, UC Berkeley

> Founder & Chief Technologist Dust Networks, a Linear company

The Swarm at The Edge of the Cloud

Micro Robots, 1995

Smart Dust, 1997

Smart Dust, 2001

Building Energy System (ucb, 2001)

- 50 temperature sensors on 4th floor
- 5 electrical power monitors
- I relay controlling a Trane rooftop chiller

Sensor Networks Take Off!

Source: InStat/MDR 11/2003 (Wireless); Wireless Data Research Group 2003; InStat/MDR 7/2004 (Handsets)

Celebrity Endorsement

Sensor Networks Take Off!

Industry Analysts Take Off!

Source: InStat/MDR 11/2003 (Wireless); Wireless Data Research Group 2003; InStat/MDR 7/2004 (Handsets)

9

Barriers to Adoption

The Requirements

- Deploy devices ANYWHERE
- The data must be RELIABLE
- No battery changes for ~ DECADE

- Time slotted and synchronized for low power and scalability
- Full mesh and channel hopping for wire-like reliability (>99.99%)
- Every node can run on batteries (or energy harvester) for 10+ years
- Incorporated into WirelessHART (IEC62591), ISA100.11a, WIA-PA, and IEEE 802.15.4E standards

Wireless HART Architecture (from ABB)

Emerson offerings, 2007 (Dave Farr presentation)

We Offer The Widest Portfolio Of Wireless Products In The Industry

Shipping Now Shipping in 2008

Middle East Desert Sand Storms

Emerson Process Managmenet, Extreme Wireless Applications

-48 °F with a wind chill of -70 °F Wireless Transmitter on the North Slope of Alaska

Emerson Process Managmenet, Extreme Wireless Applications

Rotating filter with DP transmitter going down in the steel tank and is sometimes immersed.

Emerson Process Managmenet, Extreme Wireless Applications

In Alaska, measures leak detection of pipeline running under a road mile from nearest device/gateway.

FPSO – Floating Platform, Storage and Offloading

Emerson Process Managmenet, Extreme Wireless Applications

Mobile – transmitters on a truck, drive up to a network for temporary mobile monitoring.

Emerson Process Managmenet, Extreme Wireless Applications

Aluminium plant (100 Gauss) magnetic field - nail sticking directly vertical on the transmitter being held up by the magnetic field.

Emerson Process Managmenet, Extreme Wireless Applications

Over 2,100 sites 350,000,000 operating hours and counting...

Emerson Process Managmenet, Extreme Wireless Applications

Chevron's Richmond Refinery

Richmond Refinery Wireless Umbrella

3 km², 90% coverage

Wheeling-Pittsburgh Steel

Smart Rail: Amsted Rail

- Multiple sensors per car: bearing temp, hatches, …
- Installer toolset:

"A sledgehammer and a blowtorch"

Lime Kiln at Pulp & Paper Mill

- Rotating lime kiln
- Need to monitor temperature
- 5% throughput improvement (reduced process time)

Data Center: Reduced operating costs

- Vigilent provides data center energy management service by deploying hundreds of sensors and control points in the data center
- No wires, no interruption to data center operations
- E.g. Verizon is saving > 55M kWh annually in 24 major data centers, reducing greenhouse gases by 66M pounds/year

Building Monitoring: IBM and The Met

- Hundreds of sensors monitor temperature and humidity to help preserve medieval art
- Historic building: requires no wires, no construction
- Builds a 3D "climate map" for predictive analytics & trending

Smart City: Parking, Streetline Networks

STREETLINE

Smart City: Parking, Streetline Networks

STREETLINE

Finding Parking

Variable Message Sign

Parkina

5 minute install2 to 3 year battery life

- Reflective display
- Networked

Parker app

STREETLINE

Evolving information flow in WSN

IEEE 802.15.4 Markets and Standards

Market Predictions

- IEEE 802.15.4 and ZigBee WSN chipsets are expected to top 1.1 billion units in 2015, up from 168 million units in 2010
- WSNs dramatically cut deployment, operating and maintenance costs versus wires

openWSN.berkeley.edu

0.1mm² Transceiver

- Mostly synthesized from standard cells
- Uses existing crystal for digital

➤ 10kbps 73dB link margin → meters of indoor communication range

Richard Su

➢ 0.1mm² in 65nm