Nano Thermal Management for Electronics

MEPTEC 2012 March 19, 2012

Intel/Numonyx

Vuckovic Group, Stanford

Ken Goodson Professor & Vice Chair Mechanical Engineering Stanford University STANFORD Head to the standard standard

goodson@stanford.edu http://www.nanoheat.stanford.edu

Electronics Thermal Challenges

servers

transportation

defense

Electronics Thermal Challenges

servers

portables

Electronics Thermal Challenges

servers

portables

transportation

defense

stanford Heat

Our Research

heat & power for computation

heat & power in portables

3D integration

Energy Efficiency

rapid PCR & blood analysis

Performance

stanford Heat

NanoMaterials

PCRAM Data Storage

with Intel TMG

QC Lasers/Guides

with Vuckovic et al. Stanford Composite Substrates

with Group4 Labs

nanoThermoelectrics

with RTI

Micro HX Membranes

Milnes David, Goodson group, Stanford

EUV Nano Mirrors

with KLA Tencor

Thermal Interfaces

Goodson group & Monano collaborators, Stanford

Heat & Power Management for Computation

Microfluidic Cooling

^oower map

Advanced Vapor Chambers Silicon Nanopillar Hydrophilic Layer

Representativ	eresuits
	Dry Area
Gravity	
and the second distance	Wetted

Increasing Time

ri|iri|ir cisco.

Rapid Hotspot Prediction & Power Distribution

- (a) Distributed Temperature Sensor Network (b) Description of the sensor Network (c) Description of the sensor of
 - Real-time power and hotspot mapping for temp/power–aware computing and energy saving.

• Microfluidic cooling including Porous Membrane Vapor Venting and 3D in-situ extraction (MCCI)

•Nanostructured underfill and thermal interface materials (TIM)

•Low-power nonvolatile memory technologies including PCRAM

http://www.stanford.edu/group/microheat/

Nanostructured Underfill and Interface Materials

Nonvolatile Memory including PCRAM

STANFORD HOAT

Current Group

Ken Goodson

Josef Miler Michael Barako Jaeho Lee Sri Lingamneni Saniya Leblanc Jungwan Cho

Elah Bozorg-Grayeli Amy Marconnet Shilpi Roy (EE) Yuan Gao Yiyang Li (MSE) Zijian Li

Lewis Hom Aditja Sood (MSE) Woosung Parc

Dr. Takashi Kodama Dr. Yoonjin Won Prof. Mehdi Asheghi

Selected Alumni

Prof. Dan Fletcher Prof. Evelyn Wang Prof. Katsuo Kurabayashi Prof. Sungtaek Ju Prof. Mehdi Asheghi Prof. Bill King Prof. Eric Pop Prof. Eric Pop Prof. Sanjiv Sinha Prof. Sanjiv Sinha Prof. Xeujiao Hu Prof. Carlos Hidrovo Prof. Kaustav Banerjee Prof. Ankur Jain Prof. Sarah Parikh UC Berkeley MIT U. Michigan UCLA Stanford UIUC UIUC (EE) UIUC (EE) UIUC Wuhan Univ. UT Austin UCSB (EE) UT Arlington Foothill College Dr. Jeremy Rowlette Dr. Patricia Gharagozloo Dr. Per Sverdrup Dr. Chen Fang Dr. Milnes David Dr. Max Touzelbaev Dr. Roger Flynn Dr. Julie Steinbrenner Dr. John Reifenberg Dr. David Fogg Dr. Matthew Panzer Daylight Solns Sandia Labs Intel Exxon-Mobile IBM AMD Intel Xerox Parc Intel Creare KLA-Tencor

GaN-Diamond HEMTs

Phase Change Memory

3D NanoPackaging

Microfluidic Cooling

goodson@stanford.edu http://www.nanoheat.stanford.edu

Nano Thermal Metrology

Nanobridge Samples

Single Wall Carbon Nanotube FETs

Pop, Dai, Goodson, et al., Physical Review Letters (2005), Nano Letters (2006)

Rig Complexity

Ju, Kurabayashi, Goodson, *Thin Solid Films* (1999) Lee et al., Journal of Applied Physics, (2011)

Kodama, Jain, Goodson, Nano Letters 9 (2009)

Sample Complexity

Rig Complexity

IR Imaging

Nanostructured TIMs

Volume & boundary resistance separation *Xuejiao Hu, Amy Marconnet, Sri Lingamneni*

Opposing CNT arrays up to 80 W/mK (J. Heat Transfer 2006, 2007) CNT-epoxy nanocomposites up to 5 W/mK (ACS Nano 2011) Graphene nanocomposites (work in progress for SRC)

IR Imaging

Nanostructured TIMs

Volume & boundary resistance separation *Xuejiao Hu, Amy Marconnet, Sri Lingamneni*

Opposing CNT arrays up to 80 W/mK (J. Heat Transfer 2006, 2007) CNT-epoxy nanocomposites up to 5 W/mK (ACS Nano 2011) Graphene nanocomposites (work in progress for SRC)

IR Solid Immersion Lens

Submicron resolution with microcantilever Daniel Fletcher

First thermal microscopy demonstration (Microscale Thermophysical Engineering 2003) Electromagnetic simulations and optimization (Optics Letters 2001)

Microfabrication details

(J. MicroElectroMechanical Systems 2001) Resolution demonstration

(Applied Physics Letters 2000)

Sample Complexity

Rig Complexity

Short-Timescale Photothermal Characterization of Packaging Properties

Kaeding, Skurk, and Goodson, Applied Physics Letters 65 (1994) Goodson & Ju, Annual Review of Materials Science 29 (1999) Panzer et al., Journal of Heat Transfer (2008)

Applications

PCRAM Materials and Interfaces

Elah Bozorg-Grayeli & John Reifenberg

Applied Physics Letters (2007) Electron Device Letters (2008, 2010, 2011x3!)

Intel SRS

Die Attach Metal **Distributions**

Matt Panzer, Yuan Gao, Amy Marconnet

Nanoletters (2010) J. Heat Transfer (2008) J. Electronic Materials (2009)

> SRC IPS Task 1392 (2009-2011)

SRC/Intel IPS Task 1640 (2009)

JMEMS (1999)

SRC Tasks 357 & 754 (1998)

Applications

Die Attach Scanning

m³K/W 6.0×10⁴-9.0×10⁴ 4.5×10⁴-6.0×10⁴ 3.0×10⁴-4.5×10⁴ 1.5×10⁴-3.0×10⁴ 0.00 -1.5×10⁴

Katsuo Kurabayashi IEEE Transactions on

Components, Packaging, & Manufacturing Technology (1998)

SRC Task 357 (1998)

SRC Tasks 357 & 754 (1998)

Interconnects & Low-K Dielectrics

Sungtaek Ju, Olaf Kaeding, Katsuo Kurabayashi

Journal of Heat Transfer (1998) *Electron Device Letters* (1997a, 1997b) *Thin Solid Films* (1999) *JMEMS* (1999)

Jungwan Cho, Matt Panzer SRC/Intel IPS Task 1640 (2009)

Metrology

GaN-Diamond HEMTs

Phase Change Memory

3D NanoPackaging

Microfluidic Cooling

Diamond Examples

Close proximity demands low thermal resistances at and near the diamond interface

HEMT Composite Substrates

Proc. ITHERM 2012, with Group4 Labs

Quantum Cascade Laser SubMounts

Razeghi et al., N. J. Phys. (2009)

POWER FET Passivation

Resistance Targets for GaN HEMTs

Picosecond & DC Joule Heating for GaN-on-Diamond Multilayers

Diamond & GaN in Composite Substrates

Metrology

GaN-Diamond HEMTs

Phase Change Memory

3D NanoPackaging

Microfluidic Cooling

goodson@stanford.edu http://www.nanoheat.stanford.edu

Pop, Sinha, Goodson, Proceedings IEEE (2006) Rowlette, Goodson, IEEE Trans. Electron Devices (2008)

Heat Generation and Transport in Nanometer-Scale Transistors

Phase Change Memory

Phase Change Memory

- Interface transport
- Energy consumption (reset)

Phase Change Nanodevice Group

Sponsors & Collaborators:

H.S.P Wong group (Stanford EE), Intel (Kau, Chang, Spandini), NXP (Hurckx), Micron (Smythe), IBM (Raoux, Krebs) National Science Foundation, Semiconductor Research Corporation

PCRAM Multibit Design Geometries

Wong, Goodson, Asheghi, et al., Proceedings of the IEEE (2011)

Future Phase Change Nanodevices

Metrology

GaN-Diamond HEMTs

Phase Change Memory

3D NanoPackaging

Microfluidic Cooling

goodson@stanford.edu http://www.nanoheat.stanford.edu

3D Stacking Interfaces

IBM-3M Press Release

EE Times News & Analysis 2011		
Home News & Ar	nalysis Business EE Life Embedded	l.com Design
News & Analysis	EE Times Home > News and Analysis	
Latest News Semiconductor News	News & Analysis	
DESIGN STRATEGIES	Nanotape could make solder pa R. Colin Johnson 1/24/2011 12:01 AM EST	ds obsolete
FUR ARM SYSTEMS An Avnet Design Summit	PORTLAND, Ore.—Solder pads could soon be nanotape material created by the Semiconduct and Stanford University.	e made obsolete b tor Research Corp
REGISTER NOW	By sandwiching thermally conductive carbon n	anotubes between

Hu, Fisher, Goodson, et al., *J. Heat Transfer* (2006) SRC Patent: Hu, Jiang, Goodson, US Patent 7,504,453, issued 2009 SRC Patent: Panzer, Goodson, et al., 2009/0068387 (pending)

EE Times News & Analysis Home News & Analysis Business EE Life Embedded.com		
News & Analysis Latest News Semiconductor News	EE Times Home > News and Analysis News & Analysis	
DESIGN STRATEGIES FOR ARM' SYSTEMS An Avnet Design Summit	DESIGN STRATEGIES FOR ARM' SYSTEMS a Avnet Design Summit	
REGISTER NOW	By sandwiching thermally conductive carbon nanotubes between	

Mechanical characterization of aligned multi-walled carbon nanotube films using microfabricated resonators 2012

Yoonjin Won ^{a,*}, Yuan Gao ^a, Matthew A. Panzer ^a, Senyo Dogbe ^b, Lawrence Pan ^c, Thomas W. Kenny ^a, Kenneth E. Goodson ^a

Carbon

Temperature-Dependent Phonon Conduction and Nanotube Engagement in Metalized Single Wall Carbon Nanotube Films 2010

Matthew A. Panzer,[†] Hai M. Duong,^{II} Jun Okawa,[§] Junichiro Shiomi,[§] Brian L. Wardle,[†] Shigeo Maruyama,[§] and Kenneth E. Goodson^{†,*}

2011

ACSNANO

Thermal Conduction in Aligned Carbon Nanotube–Polymer Nanocomposites with High Packing Density

Amy M. Marconnet,[†] Namiko Yamamoto,[‡] Matthew A. Panzer,[†] Brian L. Wardle,[‡] and Kenneth E. Goodson^{†,*}

Nano Thermal Metrology **Multi-property** Measurements **Pump-probe optics** Complexity SAMPLE FILM Kaeding, Skurk, Goodson, **Applied Physics Letters (1993)** Hybrid Optical-**Electrical Methods** 2 µm 100 µm Rig Gold nanoparticles Electrode AL See all all a GST λDNA SiO₂ Silicon Substrate

Sample Complexity

Mechanical & Thermal Properties of Aligned CNT Films

CNT

Carbon (2012). SRC 1640 (ended), 1966

Thermal Interface Materials (TIM) Properties

¹ Gao, Goodson, et al., J. Electronic Materials (2010). Won, Goodson, et al., Carbon (2011)

Elastic Modulus (MPa)

NSF-DOE Thermoelectrics Partnership Automotive Thermoelectric Modules

Faculty & Staff

Prof. Kenneth Goodson (Stanford), Pl

Prof. George Nolas (USF)

Dr. Boris Kozinsky (Bosch)

Prof. Mehdi Asheghi, Stanford Mechanical Engineering

- Dr. Winnie Wong-Ng, NIST Functional Properties Group
- Dr. Yongkwan Dong, USF Department of Physics

Students:

Michael Barako, Lewis Hom, Saniya Leblanc, Yuan Gao, Amy Marconnet

Leveraged Support:

Northrop Grumman, AMD/SRC, NSF Graduate Fellowships, Stanford Graduate Fellowship, Stanford DARE Fellowship, Sandia National Labs Fellowship

Metrology

GaN-Diamond HEMTs

Phase Change Memory

3D NanoPackaging

Microfluidic Cooling

goodson@stanford.edu http://www.nanoheat.stanford.edu

Microfluidics Cooling Trajectory

3D

microfluidics

Instrumented Microfluidic Platform

Kramer, Flynn, Fogg, Wang, Hidrovo, **Prasher, Chau, Narasimhan**, Goodson. "Microchannel Experimental Structure for Measuring Temperature Fields During Convective Boiling," *ASME International Mechanical Engineering Congress & Exposition*, Anaheim, CA, USA, November 13-19, 2004, IMECE2004-61936.

Trajectory of a Startup (Cooligy)

IEEE Transactions on Components and Packaging Technology (2002) Best Paper at SEMITHERM 2001

Closed-Loop Electroosmotic Microchannel Cooling System for VLSI Circuits

Linan Jiang, James Mikkelsen, Jae-Mo Koo, David Huber, Shuhuai Yao, Lian Zhang, Peng Zhou, James G. Maveety, Ravi Prasher, Juan G. Santiago, Thomas W. Kenny, and Kenneth E. Goodson

Abstract—The increasing heat generation rates in VLSI circuits motivate research on compact cooling technologies with low thermal resistance. This paper develops a closed-loop two-phase microchannel cooling system using electroosmotic pumping for the [3]. However, these capillary-driven devices are not optimal for chip powers exceeding a few tens of Watts because of the associated increases in heat pipe cross-sectional area and the limitations in the wick thickness. Pecent research on

Trajectory of a Startup (Cooligy)

Zhou et al., Proc. SEMITHERM 2004, Proc. ITHERM 2004

Vapor Escape Microfluidic HX Prototype

Prototype

International Journal of Heat and Mass Transfer (2011)

International Journal of Multiphase Flow (2011)

- Vapor-transmitting membrane reduces pressure drop and instabilities along two-phase micro HX.
- Latest data show 60% pressure drop and nearly 50% drop in excess temperature over inlet saturation.

Students: Milnes David, Roger Flynn, Julie Steinbrenner, Chen Fang, Joe Miler

Last-Minute VC Demo, 2001

Shulin Zeng with help from Evelyn Wang, Linan Jiang, and Abdullahel Bari (Stanford)

STANFORD HOAT

Current Group

Ken Goodson

Josef Miler Michael Barako Jaeho Lee Sri Lingamneni Saniya Leblanc Jungwan Cho

Elah Bozorg-Grayeli Amy Marconnet Shilpi Roy (EE) Yuan Gao Yiyang Li (MSE) Zijian Li

Lewis Hom Aditja Sood (MSE) Woosung Parc

Dr. Takashi Kodama Dr. Yoonjin Won Prof. Mehdi Asheghi

Selected Alumni

Prof. Dan Fletcher Prof. Evelyn Wang Prof. Katsuo Kurabayashi Prof. Sungtaek Ju Prof. Mehdi Asheghi Prof. Bill King Prof. Eric Pop Prof. Eric Pop Prof. Sanjiv Sinha Prof. Sanjiv Sinha Prof. Xeujiao Hu Prof. Carlos Hidrovo Prof. Kaustav Banerjee Prof. Ankur Jain Prof. Sarah Parikh UC Berkeley MIT U. Michigan UCLA Stanford UIUC UIUC (EE) UIUC (EE) UIUC Wuhan Univ. UT Austin UCSB (EE) UT Arlington Foothill College Dr. Jeremy Rowlette Dr. Patricia Gharagozloo Dr. Per Sverdrup Dr. Chen Fang Dr. Milnes David Dr. Max Touzelbaev Dr. Roger Flynn Dr. Julie Steinbrenner Dr. John Reifenberg Dr. David Fogg Dr. Matthew Panzer

Daylight Solns Sandia Labs Intel Exxon-Mobile IBM AMD Intel Xerox Parc Intel Creare KLA-Tencor